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Introduction 
 

This postdoctoral traineeship grant (W81XWH-06-1-0235, entitled “Automated patient 
positioning guided by cone-beam CT (CBCT) for prostate radiotherapy”) was awarded to 
Dr. Tianfang Li, the original principal investigator (PI) on January 1st, 2006. Dr. Tianfang 
Li left Stanford University and accepted a faculty position at the University of Texas 
Southwestern Medical Center at Dallas in the end of 2006. The award was transferred to 
the current PI, Ming Chao Ph.D. It took a few months for the transition paper work to 
complete. A no-cost-extension was filed to extend the period of the project for one year, 
namely, through December 31st, 2008. This is the annual report for the second funding 
period (January 1st, 2007 – December 31st, 2007).  

The goal of this project is to develop a clinically practical technique for prostate 
patient positioning based on newly emerged CBCT on-board imaging system. Under the 
generous support from the U.S. Army Medical Research and Materiel Command 
(USAMRMC), the PI has gained a tremendous amount of knowledge on prostate cancer 
and prostate cancer management. The support has also made it possible for the PI to 
contribute significantly to prostate cancer research. A number of conference and refereed 
publications have been resulted from the support. In this report, the PI’s research 
activities in the past year are summarized and the accomplishments of the proposed tasks 
in the Statement of Work are presented. 
 
 

Body 
 

I.  Introduction 
Modern radiotherapy equipment is capable of delivering high precision conformal dose 
distributions to the target. However, how to precisely locate the target prior to each 
treatment fraction, especially for soft tissue, remains a problem, due to possible non-rigid 
internal motion relative to bony structures or external 
technology of kilo-voltage cone-beam CT (CBCT) has 
been integrated onboard with the linear accelerator 
treatment machine. Figure 1 shows a CBCT on-board 
imager on a Varian Trilogy

landmarks. Recently, a new 

TM system. Superior to the 
common approach based on the two orthogonal images 
provided by the mega-voltage EPID, CBCT can provide 
high-resolution three-dimensional (3D) information of 
the prostate and other pelvic structures1. Thus the 
prostate target localization could be potentially done 
more accurately with the aid of the on-board CBCT 
imager, even without using any implanted fiducials. 
However, in practice, there is currently still a general lack of efficient method to utilize 
the 3D CBCT images for accurate patient positioning. The two major inherent difficulties 
in the task of prostate localization are: (1) the inter-fraction organ motions are more 
pronounced at pelvis than other sites, due to the involuntary physiological motions of the 
involved organs (such as the rectum and bladder)2, 3 (Appendices 5 and 6); (2) the 
prostate has relatively low contrast resolution in CT images, which is likely to cause 

 

Figure 1. Varian Trilogy oncology 
system with on-board CBCT imager
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more errors in target delineation or localization4 (Appendices 1 and 2 ). Extensive efforts 
have been made in utilizing CBCT for prostate target positioning, for instance, to position 
the patient using bony landmarks. Since the prostate gland can move independently to the 
bony structures and its shape may change from time to time, this commonly used 
positioning technique results in large uncertainties in prostate targeting. Manually 
matching the prostate target is possible but it is very time consuming and will introduce 
significant inter/intra-operator uncertainties. The goal of this project is to develop 
effective volumetric image guidance techniques to facilitate the patient positioning for 
prostate radiation therapy.  
 
II.  Novel strategies of enhancing the quality of CBCT images 
Onboard CBCT imaging plays an essential role in the success of prostate IMRT5-7. 
Unfortunately, the image quality of currently available CBCT is far from satisfactory due to a 
number of issues specific to the CBCT scan and image reconstruction. Factors that adversely 
affect the CBCT performance include scatter photons, motion artifacts, and excessive radiation 
dose. We were among the first in developing method to utilize the prior knowledge of the 
system to improve the resultant CBCT images. Generally, the patient has already had a 
planning CT (and possibly one or more CBCTs) before an on-treatment CBCT is acquired. 
These imaging data can be utilized as a priori knowledge to enhance the image quality and to 
reduce the radiation dose in routine CBCT imaging process. This has been successfully 
demonstrated in our previous studies on CT and PET imaging8. For CBCT imaging, due to the 
significantly reduced number of projections per reconstruction, the quality of the phase-
resolved CBCT images is greatly degraded by the view-aliasing artifacts. Most commonly, 
acquisitions using multiple gantry rotations or slow gantry rotation can increase the number of 
projections and subsequently improve the image quality. However, the price to pay here is the 
significant increase of scanning time. Our CBCT image enhancement method effectively 
circumvent this problem through effective utilization of the information contained in other 
phases and/or even previously obtained planning CT (fan beam CT). By registering the prior 
data to the CBCT (in either image space or projection space), we were able to enhance the 
contrast-to-noise ratio (CNR) of the CBCT images by 5~10 fold, without noticeable 
compromise in the spatial resolution of the resultant images. The developed technique 
significantly reduces the view-aliasing artifacts in CBCT images and leads to high quality 
images for therapeutic guidance. This technique also dramatically decreases the radiation dose 
of CBCT acquisition. The image quality enhancement makes it possible to directly use CBCT 
for accurate dose calculation and IMRT planning.  

In summary, along the direction of Task 4 in the Statement of Work, we have done 
substantial work on improving the performance of the CBCT system. We developed methods 
for enhancing the performance of CBCT and reducing radiation dose incurred during frequent 
CBCT scans4, 9. These accomplishments are attached in the Appendices (items 1 and 2), which 
conclude the task 4 in the Statement of Work.  
 
III.  Refinement of image registration technique  
In the previous funding period, a novel automated patient positioning technique was 
developed for prostate cancer patients using deformable image registration. Compared to 
the conventional approach, the new technique accounts for the complex non-rigid motion 
of the soft-tissue organs and balances the prostate target and the organs at risk 

 5



simultaneously. The method was verified using a pelvis phantom consisting of bladder, 
prostate, rectum and bony structures. The study was detailed in the previous annual 
progress report. We have further refined the registration technique and significantly 
improved the computational efficiency of the technique, thus making it possible for 
future clinical application. Briefly, our efforts were focused on improving the registration 
technique by using different similarity measures such as normalized cross correlation and 
mutual information (Appendices 1, 3, and 4). We found that by using the Mattes Mutual 
Information (MMI) metric, not only significant amount of computing time was saved, but 
also precision of the registration was achieved10. The central concept of mutual 
information (MI) is the calculation of entropy. For an image A, the entropy is defined as 

, where  (also termed as marginal probability density 
function (PDF)) is the probability distribution of grey values (image intensities) which is 
estimated by counting the number of times each grey value occurs in the image and 
dividing those numbers by the total number of occurrences. Given two images, A and B, 
their joint entropy is 

daapapAH AA )(log)()( ∫−= )(apA

dadbbapbapBAH ABAB ),(log),(),( ∫ ∫−= , where  is the 
joint PDF defined by a ratio between the number of grey values in the joint histogram 
(feature space) of two images and the total entries. The mutual information is generally 
expressed as 

),( bapAB

),()()(),( BAHBHAHBAMI −+= . MI measures the level of information 
that a random variable (e.g., Ia(x)) can predict about another random variable (e.g. Ib(x)). 
Different from the conventional MI, where two separate intensity samples are drawn 
from the image, the Mattes implementation, MMI, uses only one set of intensity to 
evaluate both the marginal and joint PDFs at discrete positions or bins that uniformly 
spread within the dynamic range of the images11. Entropy values were computed by 
summing over all the bins. The introduction of the mutual information metric has showed 
significant improvement on the registration precision and helped reducing the impact of 
scatter and other factors inherent in CBCT imaging.  
 
IV. Contour propagation from planning CT to CBCT 
Large interfraction organ motion exists in radiation therapy of pelvic diseases, such as 
prostate and cervical cancers. Adaptive therapy provides a viable option to ensure an 
adequate dose coverage of the tumor target while sparing the sensitive structures12, 13. 
Toward the general goal of more accurate patient positioning and clinically 
implementation of adaptive therapy of prostate cancer, we developed an effective 
regional contour mapping technique to automatically propagate rectum and prostate 
contours from planning CT to CBCT2, 3, 10, 14 (Appendices 3, 4, 5, and 6). This effort is 
based on the precise deformable registration between planning CT and CBCT images. 
Different from disease sites, such as the lungs and liver, the contour mapping here in 
prostate radiation therapy is complicated by two factors: (i) the physical one-to-one 
correspondence may not exist due to the insertion or removal of some image contents 
within the rectum; and (ii) reduced signal to contrast ration of the CBCT images due to 
increased scatter in CBCT scanning. A solution customized to rectum mapping is 
proposed to overcome the above two limitations and allow us to take advantage of the 
regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling. The 
implementation of the contour propagation was achieved with the narrow shell technique. 
The shell was constructed outside the manually delineated contours on planning CT 
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including the region of 1 ~ 2 cm. The central idea here is to exclude the volume inside the 
rectum because its content may change from day to day. Prostate contour can be mapped 
similarly, but the shell spans the regions both inside and outside the manually segmented 
prostate. Figure 2 illustrates the planning CT and the template contours for the ROIs such 
as prostate and rectum. Based on the narrow shell technique, various deformable models 
such as B-Spline and Thin Plate Spline models were employed to achieve the goal of 
contour propagation15, 16.  A feature based model using the Scale Invariant Feature 
Transformation (SIFT) was also explored for higher registration accuracy3, 17, 18 
(Appendix 5). The mapped rectal contour is illustrated in Figure 3. This task was 
completed during the second funding period – one manuscript reporting the use of narrow 
shell based contour mapping strategy has been accepted by Physics in Medicine and 
Biology for publication. In addition, a paper reporting the use of SIFT method to auto-
identify the tissue features for robust deformable registration and contour mapping in the 
pelvic region has been conditionally accepted by Medical Physics for publication 
(Appendices 5 and 6). 
 

                        
 

 
 

 
Key Research Accomplishments 

Figure 2. Narrow shell representation 
of regions of interest. Figure 3. Mapped rectal contours (in 

red). Manual contour is overlaid (blue) 

 
• Established a novel technique to enhance on-board CBCT and to effectively reduce 

the radiation dose (Task 4 of SOW) 
• Improved the registration technique by investigating various similarity measures 

including both the normalized cross correlation metric and the Mattes mutual 
information metric (Task 2 of SOW) 

• Developed a novel technique of narrow shell representation of the regions of interest 
better target localization and critical structure modeling to account for the large inter-
fraction (Task 3 of SOW) 

• Established the framework of contour propagation from planning CT to CBCT based 
on the narrow shell technique for the adaptive prostate radiation therapy (Task 3 of 
SOW) 
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Reportable Outcomes 
 

The following is a list of publications resulted from the grant support. Copies of the 
publication materials are enclosed with this report. 
 
Refereed Publications 
The following is a list of peer reviewed publications.  

• T. Li, A. Koong, L. Xing, “Enhanced 4D cone-beam CT with inter-phase motion model”, 
Medical Physics, 34 3688-3695, 2007 

• T. Li, L. Xing, “Optimizing 4D cone-beam CT acquisition protocol for external beam 
radiotherapy”, International Journal of Radiation Oncology, Biology, Physics, 67 1211-
1219, 2007 

• M. Chao, E. Schreibmann, T. Li, N. Wink, L. Xing, “Automated contour mapping using 
sparse volume sampling for 4D radiation therapy”, Medical Physics, 34 4023-4029, 2007 

• N. Wink, M. Chao, J. Antony, L. Xing, “Individualize treatment margin in respiration-
gated radiation therapy”, Physics in Medicine and Biology, 53 165-175, 2008 

• M. Chao, T. Li, E. Schreibmann, A. Koong, L. Xing, “Automated contour mapping with 
a regional deformable model”, International Journal of Radiation Oncology, Biology, 
Physics, 70 599-608, 2008 

• Y. Xie, M. Chao, P. Lee, L. Xing, “Feature-based rectal contour propagation from 
planning CT to cone beam CT for adaptive radiotherapy”, Medical Physics, 2008, 
conditionally accepted. 

• M. Chao, Y. Xie, L. Xing, “Auto-propagation of contours for adaptive prostate radiation 
therapy”, Physics in Medicine and Biology, 2008, in press. 

 
Published Abstracts 
The PI’s group has also been active in disseminating the research results. The following are some 
of the presentations given in various national and international conferences. 

• M. Chao, E. Schreibmann, T. Li, L. Xing, “Automatic Contour Mapping in 4D Radiation 
Therapy”, Proceedings of the XVth International Confenrence on the Use of Computers 
in Radiation Therapy (ICCR), June 4-6, 2007, Toronto, Canada 

• C. Wang, M. Chao, L. Xing, “Electron density mapping for MRI-based treatment 
planning”, Medical Physics 34, 2592 (2007) 

• T Li, L Papiez, R Timmerman, H Choy, A Koong, L Xing, “High-Quality Four-
Dimensional CBCT Reconstruction with Virtual Projections”, Medical Physics 34, 2638 
(2007) 

• M. Chao, E. Schreibmann, T. Li, L. Xing,  “Automated propagation of region-of-interest 
contours between 4DCT Images using a regional deformable model”, Medical Physics 
34, 2515 (2007) 

• N. Wink, M. Chao, L. Xing, “Individualized gating windows based on four-dimensional 
CT information for respiration gated radiotherapy”, Medical Physics 34, 2384 (2007) 

• M. Chao, L. Xing,  “Auto-recontouring of CBCT images for adaptive therapy”, Medical 
Physics 34, 2352 (2007) 

• A. de la Zerd, M. Chao, B. Armbrush, Y. Yang, S. Hancock, C. King, T. Li, L. Xing, 
“Adaptive IMRT for improved prostate cancer treatment”,  Proceedings of the U.S. 
Department of Defense (DOD) Prostate Cancer Research Program (PCRP) Innovative 
Minds in Prostate Cancer Today (IMPaCT) meeting, September 5 – 8, 2007, Atlanta, 
Georgia 
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• M. Chao, Y. Xie, Q. Le, L. Xing, “Modeling the volumetric change of head and neck 
tumor in response to radiation therapy”, International Journal of Radiation Oncology * 
Biology * Physics, Volume 69, Issue 3, Supplement 1, 1 November 2007, Page S741 

• T. La, M. Chao, L. Xing, Q. Le, “Evaluation of intrafraction motion in head and neck 
cancer during radiotherapy”, International Journal of Radiation Oncology * Biology * 
Physics, Volume 69, Issue 3, Supplement 1, 1 November 2007, Pages S681 – S682 

• L. Xing, L. Lee, M. Chao, P. Keall, T. La and Q. Le, “Clinical implementation of on-
board CBCT-based adaptive IMRT for head and neck cancer”, International Journal of 
Radiation Oncology * Biology * Physics, Volume 69, Issue 3, Supplement 1, 1 
November 2007, Page S446 

• J. Wang, M. Chao, L. Xing,  “Toward clinical implementation of adaptive treatment 
planning: auto-propagation of contours from planning CT to cone beam CT”, 
International Journal of Radiation Oncology * Biology * Physics, Volume 69, Issue 3, 
Supplement 1, 1 November 2007, Page S43 

 
 

Conclusions 
 

In the past funding year, the PI has contributed greatly to development of novel prostate 
cancer patient positioning technique. He has also gained improved knowledge on prostate 
cancer and prostate radiation therapy treatment. Various factors affecting the final 
positioning decisions are addressed. A few important milestones have been achieved 
toward the goal of the project. These include: (i) Established a novel technique to 
enhance on-board CBCT and to effectively reduce the radiation dose incurred in the 
scanning process; (ii) Developed a robust registration model with improved metric 
function; (iii) Developed an innovative narrow shell technique for better target 
localization and model the critical structure; (iv) Established the method for auto-
propagation of contours from planning CT to CBCT based on feature based spline 
deformable registration. Integration and further refinement of the above tools are in 
progress. Together with the accomplishments as described in the first annual report: (1) 
developed and clinically implemented an automated patient positioning strategy and 
tested with phantom experiments; (2) developed image-to-projection deformable 
registration algorithm to improve the CBCT image quality by reducing the view-aliasing 
artifacts; and (3) radiation dose reduction, we have completed most tasks as described in 
the Statement of Work. More evaluations and testing of the developed tools are being 
carried out. The data and experiences accumulated in this project are well documented, 
and serve as a good reference/guidance for effective use of volumetric CBCT imaging 
technology.  The research improves volumetric image guided prostate radiation therapy 
and enhances the outlook of the onboard CBCT in clinical practice.  
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HYSICS CONTRIBUTION

OPTIMIZING 4D CONE-BEAM CT ACQUISITION PROTOCOL FOR
EXTERNAL BEAM RADIOTHERAPY

TIANFANG LI, PH.D., AND LEI XING, PH.D.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA

Purpose: Four-dimensional cone-beam computed tomography (4D-CBCT) imaging is sensitive to parameters
such as gantry rotation speed, number of gantry rotations, X-ray pulse rate, and tube current, as well as a
patient’s breathing pattern. The aim of this study is to optimize the image acquisition on a patient-specific basis
while minimizing the scan time and the radiation dose.
Methods and Materials: More than 60 sets of 4D-CBCT images, each with a temporal resolution of 10 phases,
were acquired using multiple-gantry rotation and slow-gantry rotation techniques. The image quality was
quantified with a relative root mean-square error (RE) and correlated with various acquisition settings;
specifically, varying gantry rotation speed, varying both the rotation speed and the number of rotations, and
varying both the rotation speed and tube current to keep the radiation exposure constant. These experiments
were repeated for three different respiratory periods.
Results: With similar radiation dose, 4D-CBCT images acquired with low current and low rotation speed have
better quality over images obtained with high current and high rotation speed. In general, a one-rotation
low-speed scan is superior to a two-rotation double-speed scan, even though they provide the same number of
projections. Furthermore, it is found that the image quality behaves monotonically with the relative speed as
defined by the gantry rotation speed and the patient respiratory period.
Conclusions: The RE curves established in this work can be used to predict the 4D-CBCT image quality before
a scan. This allows the acquisition protocol to be optimized individually to balance the desired quality with the
associated scanning time and patient radiation dose. © 2007 Elsevier Inc.
Image-guided radiotherapy, Four-dimensional cone-beam CT, Optimization.
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INTRODUCTION

nboard cone-beam computed tomography (CBCT) imag-
ng provides a convenient means for accurate patient setup
nd dose verification (1–8). However, when used for thorax
r upper abdomen imaging, motion artifacts appear in the
econstructed images because of intrascanning organ mo-
ion within the field of view (FOV). According to the
nternational Electric Commission recommendation, on-
oard CBCT systems have a limited gantry rotation speed of
0 s per round. A complete scan therefore consists of
rojection data from 10 to 20 respiratory cycles of the
atient, resulting in large amount of inconsistency in the
BCT projection data. Reconstruction algorithms based on

heories of static object lead to images that are significantly
eteriorated by motion artifacts. Because of the prolonged
canning time, these motion-induced adverse effects in
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BCT are much more severe than those seen in conven-
ional CT scans (9). The artifacts not only blur the image,
ut also inhibit direct use of CBCT for dose calculation
10–12).

Four-dimensional (4D) CBCT, or respiration-correlated
BCT, groups the acquired projection data into several bins
s according to their respiratory phases. Each phase bin is
hen reconstructed independently to obtain a volumetric
mage corresponding to that specific phase (13–15). 4D-
BCT not only greatly reduces the motion artifacts pre-

ented in each of these phase-resolved images, but also
rovides the dynamic information of the patient anatomy,
hich is absent in the three-dimensional (3D) case, and

ould be very useful in future 4D radiotherapy (1).
Because the total amount of projections acquired during a

D-CBCT scan is divided into several phase groups, the
umber of projections available for each image reconstruc-
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ion becomes much less than in the regular 3D-CBCT case.
s known from theory, the number of projections needed to

void undersampling artifacts is inversely proportional to
he reconstructed voxel size (16). An insufficient number of
rojections will lead to severe view-aliasing artifacts. To
ncrease the number of projections for each phase, two
trategies that can be employed are: slowing down the
antry rotation speed (SGR) and multiple gantry rotations
MGR). In addition to the gantry rotation speed and the
umber of gantry rotations, the quality of 4D-CBCT images
s also sensitive to parameters such as the X-ray pulse rate,
he tube current, and the patient’s breathing pattern. These
arameters constitute a multidimensional space, making
he optimal 4D-CBCT protocol intractable. To balance the
radeoff between image quality, scan time, and patient ra-
iation dose, a patient-specific 4D-CBCT acquisition pro-
ocol is highly desirable. This issue is systematically studied
n this work, with the goal of fully understanding the influ-
nces of these various scanning parameters to optimize
D-CBCT data acquisition protocol.

METHODS AND MATERIALS

D-CBCT data acquisition system
An Acuity simulator (Varian Medical Systems, Palo Alto, CA)

as used in this work for all CBCT imaging. In the case of regular
D-CBCT simulation, a gantry rotation speed of 8°/s is used. The
-ray tube operates at 125 kVp and 80 mA with a pulse width at

ach projection angle of 9 ms when no bow-tie filter is used. The
ulse width is increased to 25 ms if a bow-tie filter is used to
aintain similar photon statistics. The data are acquired at �15

rames/s and a full rotation (slightly more than 360°) consists of
bout 685 projections corresponding to an angle interval of about
.5°. The radiation dose of a one-rotation CBCT scan at isocenter
s approximately 4.0 cGy. The dimension of each acquired pro-
ection image is 397.3 mm � 298.0 mm, containing 1,024 � 768
ixels. With a source-to-axis distance of 100 cm and source-to-
etector distance of 150 cm, the field of view is around 25 cm in
iameter in the transverse plane for a full-fan mode. This can be
lose to 50 cm if a half-fan mode is employed (by shifting the
at-panel detector laterally). Here it should be noted that the
alf-fan mode generally results in inferior image quality when
ompared with that obtained with full-fan mode if all other acqui-
ition parameters are maintained the same, and is a consequence of
he loss of the data redundancy as is in the full-fan mode. How-
ver, for regions such as the thorax, a full-fan mode may result in
runcated images, which are not appropriate for dose calculation.
hus the half-fan mode is preferred when a large field of view is

equired, and this mode is therefore used in this work.
To generate the 4D image sets, the acquired CBCT projections
ust be sorted into a number of bins according to their specific

espiratory phases. The phase information of each projection can
e obtained with the aid of a motion tracking system, for example,
he Real-time Position Management system (Varian Medical Sys-
ems) as done in 4D-CT acquisition with conventional diagnostic
T scanners (17–25), or alternatively, it can be achieved by
nalyzing the acquired raw data in the projection space (26). In the
atter, one or more CT-opaque fiducials are placed on the patient
kin and the locations of the fiducials in the projections are

etected by a computer searching algorithm. The coordinate of the d
ducial is recorded as a function of the gantry angle, revealing the
otion status of the object for each projection. In this work, the

rojection-space approach is used. Figure 1 shows an example of
uch a plot for the periodically moving phantom. The projections
re phase-tagged according to the resultant sinusoidal curve, and
orted into 10 phase groups. The data in each phase bin are then
econstructed independently using a Feldkamp algorithm with a
ixel size of 0.5 mm � 0.5 mm in the cross-section plane and a
lice thickness of 1.0 mm.

otion phantom
To investigate the influence of various scanning parameters on

he quality of 4D-CBCT, a motion phantom was constructed. The
otion phantom consisted of a commercial CT calibration phan-

om CatPhan 600 (The Phantom Laboratory, Inc., Salem, NY) that
s placed on top of a platform capable of sinusoidal motion along
hree directions: the phantom moved with the maximal displace-
ents 5.5 cm in superoinferior direction, 1.5 cm in anteroposterior

irection, and 0.2 cm in lateral direction. The period of the motion
as continuously adjustable in the range of 0.5 s–1 min. In this
ork, three different periods were used to study the effects of
reathing cycle on the image quality, which were 3.37 s, 4.59 s,
nd 6.53 s. 4D-CBCT images of the motion phantom were ac-
uired using SGR or MGR methods as described in the following
ection. All 4D data acquisitions were using X-ray tube current of
0 mA unless otherwise stated. For comparison, three additional
cans, with the phantom “frozen” at the “peak-inspiration,” “mid-
xpiration” and “peak-expiration” phases, were obtained as well
sing the standard 3D-CBCT protocol (gantry rotation speed at
°/s, X-ray tube current and voltage at 80 mA and 125 kVp,
espectively). The three scans served as our “standards” for these
hases.

D-CBCT image analysis
Because the images in this work involve significant artifacts, a

ommon metric such as contrast-to-noise ratio (CNR), defined as

NR � | � S�1 � S�2 � | ⁄�, may not be suitable, in the sense that
high CNR output may not represent a better image. For example,
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ig. 1. An example of the projection-space phase tracking used in
his work. The black solid squares and the red open circles repre-
ent the positions of the fiducial marker in the real world coordi-
ate system and projection space, respectively. The sinusoidal
urve obtained from cone-beam computed tomography projections
an be used to determine the phase of each projection.
ark streak artifacts may accidentally decrease the mean value of
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�
2, leading to a high CNR value. Thus the CNR metric may highly
epend on the selected regions of interest. To have a more robust
nd accurate assessment of the images obtained using different
BCT settings, a “relative root mean square error” (denoted by
E) is chosen as the figure of merit of the image quality, which is
efined as

RE � ��
i

(S4D(i) � S0(i))
2 ��i

S 0
2(i)�1 ⁄ 2

, (1)

here S4D denotes the 4D single-phase image, and S0 is the
tandard 80-mA 3D-CBCT images of the phantom frozen at the
ame phase. The summation runs over all voxels of the images. In
q. 1, S0 image is used as the “gold standard,” and the mean square
rror between the 4D images and the gold standard is normalized
o the mean square of the true intensity.

low-gantry rotation strategy
A sufficient number of projections must be collected for each

hase to remove the view-aliasing artifacts in 4D-CBCT. One way
o achieve this is to slow down the gantry rotation. In this way, the
umber of breathing cycles covered by a full rotation is increased,
eading to more projections in each phase group. Figure 2 is a
ketch illustrating the relationship between the gantry rotation
chemes and the breathing. The dark areas represent the available
rojections that belong to the same phase group.
To examine the influence of gantry rotation speed on the result-

nt image quality, scans were made of the motion phantom for
ight gantry rotation speeds ranging from 8°/s to 1°/s. All other
ystem variables were kept constant with the X-ray tube current
nd voltage in these eight scans being held at 10 mA and 125 kVp,
espectively. This increased the total number of projections from
bout 680 for 8°/s speed to about 5,440 for 1°/s speed. Conse-
uently, the number of projections in each phase bin increased by
8 times. The resultant 4D-CBCT images were then analyzed

sing the RE metric as defined in Eq. 1.
Another important quantity for SGR 4D acquisition is the rela-

ion between image quality and the associated radiation exposure.
or a constant X-ray pulse width, the radiation dose is directly
roportional to the number of projections (beam-on time) and
ssentially linear to the X-ray tube current. Hence a scan with a
otational speed of 1°/s at 10 mA current will result in a similar
mount of radiation as a scan with a 2°/s rotation speed at doubled
he tube current. To investigate this image quality–tube current
elationship, 4D-CBCT images of the motion phantom were ac-
uired for 1°/s-10 mA, 2°/s-20 mA, 4°/s-40 mA, 5°/s-50 mA, and
°/s-80 mA, for each of the three motion periods mentioned
reviously. These scanning schemes deliver a similar radiation
ose to the phantom. A quantitative comparison of the 4D images
as carried out.

ultiple-gantry rotation strategy
An alternative to SGR is MGR 4D acquisition, in which the

antry now rotates multiple times back and forth. As with SGR,
he projections of the same phase are again collected and used for
D-CBCT image reconstruction. The MGR acquisition scheme in
elation to the breathing pattern is sketched in Fig. 2c. As shown,
oth SGR and MGR strategies lead to an increase in the number of
rojections over conventional CBCT (Figs. 2b, 2c); however, the
ngular distribution of the projections of a given phase group is

ery different. In SGR, the projections belonging to a particular m
reathing phase are regularly distributed in the angular space,
hereas in MGR, two or more rotations lead to the projection
ecoming irregular. As a result, now there is a chance that, during
he multiple gantry rotations, projections at the same phase and
antry angle may occur more than once, leading to redundancy of
he data and resulting in less effective 4D-CBCT reconstruction.
he angular overlap or partial overlap of the projection data can,

n principle, be avoided/reduced by properly selecting the initial
hase of the two (or multiple) scans. Generally, as illustrated in
ig. 2d, the chance for two successive scans to overlap is minimal
hen the gantry moves in opposite directions. One can imagine

hat if two scans are in the same direction, at every angle, the two
rojections from the two scans may be at same phase in the
xtreme case. This scenario will never happen if the two scans are
n opposite directions. Two-rotation MGR scans with the gantry
back and forth” were performed for each of the previously men-
ioned three motion periods and the results were compared with
hat obtained using SGR. To maintain a constant radiation expo-
ure, the gantry rotation speed in the MGR approach was increased
y a factor of two as compared with that of a single rotation scan.

elative gantry speed
Four-dimensional-CBCT image quality depends not only on the

antry rotation speed, but also on the patient respiratory pattern.
his suggests that a patient-specific setting might be needed to
chieve a similar quality of 4D-CBCT images. Here we propose a
ew measure of relative speed to combine the two variables of
antry rotation and patient respiration, which is defined as follows

elative Speed � Respiratory Period(s)

� Gantry Rotation Speed(deg ⁄ s). (2)

Relative speed has a unit of degree, which is the spanned angle
f the CBCT scan during the time of one respiratory cycle.
The data acquired in these studies, for different motion periods

nd different scanning speed at constant X-ray tube current (10
A) and voltage (125 kVp), were reanalyzed to illustrate the

tility of the new concept in optimizing the 4D-CBCT image
cquisition protocol on a patient-specific basis.

RESULTS

D-CBCT image quality as a function of gantry
otation speed

Four-dimensional-CBCT images acquired with eight dif-
erent gantry rotation speeds and constant X-ray tube cur-
ent (10 mA) for the phantom moving at a period of 3.37 s
re summarized in Fig. 3. From the top-left to the bottom-
iddle, the images correspond to gantry rotation speeds

rom 8°/s to 1°/s. Without loss of generality, only the phase
% images of the 4D-CBCT acquisitions are compared
ere. Note that all other imaging parameters such as the tube
urrent and voltage were the same for all the eight scans.
he golden standard image (obtained with a standard 3D-
BCT protocol and without motion) is also shown at the
ottom right in Fig. 3. As expected, it is found that the
mage quality improves with decreasing gantry rotation
peeds. Similar trends were also observed for the phantom

oving with the other two periods (4.93 s and 6.53 s).
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The quantitative relation between image quality and gan-
ry rotation speed was analyzed using the image metric of
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antry rotation speed, the image quality improves (smaller
Es) with increasing phantom velocities. This is not sur-
rising because a full scan at fast phantom speed will
ontain more respiratory cycles, leading to a reduction of
he gap (Fig. 2) between the projections of same phase in
wo successive cycles, hence less view-aliasing artifacts. To
elp visualize this effect, Fig. 5 shows the 0% phase images
btained for the three different motion modes with the same
antry rotation speed of 2°/s.

ig. 3. From the top-left to the bottom-right are the four-dimen-
ional cone-beam computed tomography (4D-CBCT) images of
hase 0% obtained by varying the gantry rotation speed from 8°/s
o 1°/s, and the three-dimensional CBCT images of the phantom
frozen” at the same phase. All 4D-CBCT were acquired with
-ray tube current of 10 mA.

ig. 4. Relation between relative root mean-square error and
antry rotation speed for three motion modes with periods of
m.37 s, 4.93 s, and 6.53 s, respectively.
GR acquisition under the condition of a constant
adiation exposure

As mentioned previously, the photon flux, noise level and
atient radiation exposure are all related to the tube current.
his is investigated by comparison of the 0% phase 4D

mages for scans of 8°/s at 80 mA, 5°/s at 50 mA, 4°/s at 40
A, 2°/s at 20 mA, and 1°/s at 10 mA. Because the

adiation exposure is approximately proportional to the tube
urrent, scans with these eight settings deliver a similar
evel of radiation dose to the phantom. Again, the image

ig. 5. Four-dimensional cone-beam computed tomography im-
ges of phase 0% obtained at the same gantry rotation speed of
°/s, but different phantom motion periods.
etric of RE was employed to quantify the difference
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mong the images. As shown in Fig. 6, the image acquired
ith the combination of 1°/s and 10 mA setting had the best
uality (smallest RE). For visual comparison, the 1°/s—10
A and 8°/s—80 mA images are shown in Fig. 7. Moving

o slower gantry rotation speed will lead to each phase
ccumulating more projection data that can be used for
econstruction as compared with faster scans. As a conse-
uence, the integral photon number (filtered back projec-
ion) at a spatial point is not reduced in the SGR low-current
cquisition as compared with high-current, high-speed
cans. Furthermore, at low scan speed, the data become
ore evenly spared along the 360° circle for each phase,

eading to less view-aliasing artifact and consequently to
igher image quality.
As shown in Fig. 6, it is found that RE increases almost

inearly as a function of the scan speed. Because the total
umber of projections in a scan, and therefore the number of
rojections in each phase, varies linearly with the gantry
otation speed, it seems that the RE measure is an appro-
riate image metric, which has a linear relationship to the
umber of projections available for generating the phase
mage.

D-CBCT imaging with single- and
ouble-gantry rotations
Both SGR and MGR resulted in an increased number of

rojections. However, as illustrated in Figs. 2b and 2c, the
ngular distribution of the projections is different for the two
cquisition schemes. In general, the efficiency of the MGR
ethod depends on the level of projection redundancy or

verlap of the data from the two or more gantry rotations.
he 4D-CBCT images acquired with SGR and MGR were
ompared using the RE metric, and the results are summa-
ized in Fig. 8. Here it is found that for all three motion
odes (3.37 s, 4.93 s, and 6.53 s, respectively) and for
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ig. 6. The effects of increasing tube current and gantry rotation
peed. With the same radiation dose, lower speed results in higher
uality four-dimensional images as a result of increased number of
rojections per phase.
ifferent combinations of the gantry rotations speed and (
umber of rotations, SGR almost always led to a lower RE
r better image quality than the MGR method.

D-CBCT image quality as a function of the
elative speed

The relationship between the image quality and the rela-
ive speed is presented in Fig. 9. The data shown in Fig. 9
ere fitted with a second order polynomial. The parameters
f the model and the goodness of the fit are also shown in
he figure. The monotonic dependence of the RE on the
elative speed suggests that the relative speed is a meaning-
ul concept in characterizing the 4D-CBCT data acquisi-
ion. The quantity “condenses” two important parameters
patient-specific respiration period and the gantry rotation
peed) into one and is useful for us to optimize the 4D-
BCT acquisition protocol. In reality, because the respira-

ory period of a patient can be measured with the aid of a
eal-time position management signal or similar device
e.g., strain gauge signal) before the 4D-CBCT scanning, a
uitable gantry speed can be derived to achieve a prespeci-
ed image quality before 4D-CBCT scan. Alternatively, one
an use the curve as shown in Fig. 9 to preestimate the 4D
mage quality for an acquisition setting and to estimate the
orresponding patient radiation dose.

DISCUSSION

Cone-beam CT volumetric imaging integrated with a
edical linear accelerator opens new avenues for improving

urrent radiation oncology practice. In reality, CBCT has
wo important applications: patient setup and dose recon-
truction/verification. By imaging the patient routinely dur-
ng a course of radiation therapy, the accuracy of the patient
etup can potentially be improved. Furthermore, the CBCT
rovides a pretreatment patient model on which the dose
alculation can be performed using intended fluence maps
rom the planning system or other means. Both applications
ely on the fidelity and quality of the volumetric images.

hen imaging in the region of thorax and upper abdomen,
owever, respiration-induced artifacts, such as blurring,
oubling, streaking, and distortion are observed, which
eavily degrade the image quality, and affect the target

ig. 7. Comparison of four-dimensional cone-beam computed to-
ography images acquired with speed 1°/s tube current 10 mA
left) and speed 8°/s tube current 80 mA (right).
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ocalization ability and the accuracy of dose verification.
hese artifacts in CBCT are much more severe than those

ound in conventional CT exams because of the relatively
low gantry rotation. In conventional CT, each rotation of
he scan can be completed within 0.5 s, during this period
he organ/tumor motion is relatively small. Patient body
estraints and breath-hold techniques can be used to mini-
ize the motion if necessary. On the contrary, in CBCT

can, the gantry rotation speed is much slower, typically
round 1 min for a full 360° scan in acquiring the projection
ata, which covers more than 10 breathing cycles for most
atients. 4D-CBCT or phase-correlated CBCT is an effec-
ive way to reduce/eliminate the motion artifacts and makes
t useful for guiding the patient setup and dose validation in
he presence of organ motion.

Radiation dose is an important issue in CT imaging and,
n particular the onboard CBCT imaging because of the
epeated use of modality for a given patient. We found that,
s we increase the number of projections per phase by
lowing down the gantry rotation speed or multiple gantry
otations, the tube current can be lowered accordingly. In
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Fig. 8. The effects of increasing the number of rotations
the cases, low rotation speed results in a better image q
his way, the 4D image quality is generally not compro- m
ised and one can obtain decent 4D-CT images without
ncreasing the radiation exposure. In a sense, this scheme is
o “spread” the photons of a projection in 3D-CBCT to a
ange of angles in 4D-CBCT imaging, which represents a
etter tradeoff between the signal-to-noise ratio and the
eduction in motion artifacts. In addition to the reduced
atient dose, low current is essential to avoid overheating
he X-ray tube, especially for an onboard imager without oil
ooling system. Although the 4D image quality directly
elates to the number of projections available for each
hase, there is a limit for slowing down gantry speed.
eyond this limit, the time needed to complete the scan may
e too long to cause patient discomfort and extra intrascan
otion (other than the respiration-induced motion) may

ead to undesirable artifacts. There is a practical need to
eep the scanning time as short as possible while maintain-
ng an acceptable image quality. The result shown in Fig. 9
rovides guidance for the 4D-CBCT acquisition on a pa-
ient-specific basis, which predicts the quality of the 4D
mages for a certain gantry rotation speed and patient respi-
atory period. Though patient irregular breathing patterns
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ections in each phase and thus change the image qualities,
ig. 9 will nonetheless represent an approximate relation
etween the image quality and the average patient respira-
ory period. Obviously, this approximation is valid only
hen the irregularity of the breathing pattern is not far from

deal periodic motion. It is also worth noting that the influ-
nce of breathing irregularity on the 4D images is different
rom that in conventional fan beam CT, in which the bin-
ing artifacts may arise due to mismatch of the slices
orresponding to different couch positions.

Although 4D-CBCT technique (SGR or MGR) with
hase binning before reconstruction reduces the motion
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Four-dimensional �4D� cone-beam CT �CBCT� is commonly obtained by respiratory phase binning
of the projections, followed by independent reconstructions of the rebinned data in each phase bin.
Due to the significantly reduced number of projections per reconstruction, the quality of the
4DCBCT images is often degraded by view-aliasing artifacts easily seen in the axial view. Acqui-
sitions using multiple gantry rotations or slow gantry rotation can increase the number of projec-
tions and substantially improve the 4D images. However, the extra cost of the scan time may set
fundamental limits to their applications in clinics. Improving the trade-off between image quality
and scan time is the key to making 4D onboard imaging practical and more useful. In this article,
we present a novel technique toward high-quality 4DCBCT imaging without prolonging the acqui-
sition time, referred to as the “enhanced 4DCBCT”. The method correlates the data in different
phase bins and integrates the internal motion into the 4DCBCT image formulation. Several strate-
gies of the motion derivation are discussed, and the resultant images are assessed with numerical
simulations as well as a clinical case. © 2007 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2767144�
Key words: cone-beam, 4D CT, on-board imager, IGRT, organ motion
I. INTRODUCTION

Medical linear accelerators equipped with cone-beam CT
�CBCT� imaging system, using either a kV or MV x-ray
source, have recently become available in clinics. The volu-
metric image provided by CBCT opens new avenues for pa-
tient setup, dose verification, and online treatment
planning.1–12 These applications rely highly upon the fidelity
and quality of the CBCT images. When imaging in the re-
gion of thorax and upper abdomen, however, respiration in-
duced artifacts, such as blurring, doubling, streaking, and
distortion are observed, which heavily degrade the image
quality and affect the target localization ability and the accu-
racy of the dose calculation.13,14

A recently proposed method to account for respiratory
motion during CBCT imaging is called “respiration corre-
lated CBCT” or four-dimensional �4D� CBCT.15–18 In this
method, the CBCT projections are divided into several
groups according to their respiratory phases. Each phase
group is then reconstructed independently to yield a volu-
metric image corresponding to that specific phase. Since the
selected projections in each group have almost the same
phase, the method greatly reduces the motion-induced incon-
sistency among the data, leading to improved image recon-
struction. However, the number of projections available for
each image reconstruction is substantially decreased com-
pared to a conventional 3D CBCT due to the data dividing.
This may lead to a serious undersampling problem and result

in strong view-aliasing artifacts in the phase-resolved im-
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ages. The artifacts are generated during the backprojection
step in the CBCT image reconstruction process and are seen
mainly in the 2D axial planes.

To eliminate the view-aliasing artifacts in 4DCBCT, we
have recently investigated acquisition techniques of “mul-
tiple gantry rotation” and “slow gantry rotation” with low
x-ray tube current.16,17 These methods increase the number
of projections of each phase and significantly improve the
4DCBCT image quality. However a practical issue is the
prolonged acquisition time, which may limit their clinical
applications.

The purpose of this work is to investigate a novel ap-
proach to reduce the acquisition time while maintaining the
4DCBCT image quality, or from another point of view, to
enhance the current 4DCBCT image quality while using
short acquisition time. The approach developed in this article
is essentially to reduce the view-aliasing artifacts resulted
from insufficient sampling. To increase the sampling rate in
each individual phase, the projections of all other phases can
be incorporated into the reconstruction process. To do so, a
motion model linking the data of different phases is required,
which can be derived from deformable registrations of the
4DCBCT phases. Two other registration strategies of intro-
ducing an additional diagnostic CT image and mapping be-
tween image space and projection space are also investi-
gated. The proposed approach is evaluated with numerical
simulations. Since the view-aliasing artifacts are prominent
only in the axial view and for simplicity, we start with fan-
beam �2D� geometry to study the performance of the ap-
proach, a clinical case of a lung cancer patient is then pre-

sented.

3688„9…/3688/8/$23.00 © 2007 Am. Assoc. Phys. Med.
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II. METHODS AND MATERIALS

II.A. Modified Feldkamp reconstruction for reduced
view-aliasing artifacts

As described earlier, to form the 4DCBCT images, the
acquired projection data are retrospectively sorted into sev-
eral phase bins before reconstructions. When the acquisition
time is limited, the reduced number of projections per recon-
struction will result in undersampling and degrade the image
with view-aliasing artifacts. In order to improve the sampling
rate in each phase, we need to borrow projection information
from other phases. Obviously, direct inclusion of projections
of other phases will cause the inconsistency in the data due
to patient motion. However, as we have shown previously, if
the motion can be accurately modeled, a motion-corrected
CBCT reconstruction can be obtained.19 This reconstruction
method is a modified Feldkamp algorithm, which performs
the backprojections of the filtered data along deformed paths
according to the corresponding motion model. Equivalently
and computationally more efficiently, one can reconstruct
each individual phase first, then superimpose all the phases
after deforming each of them into the same phase based on
the given motion model. This method can be described in the
following flow chart �Fig. 1�.

II.B. Motion model estimation

To derive the motion model �i.e., the points of correspon-
dence between any two phases� to be used in the enhanced
4DCBCT reconstruction, we have investigated the following
three registration strategies with and without the aid of an
additional 3D CT image.

II.B.1. Register artifacts-contaminated 4DCBCT
images

The most straightforward way to find the motion model is

FIG. 1. Flow chart of the proposed reconstruction process for enhanced
4DCBCT imaging.
to register the regular 4DCBCT phases using a deformable
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model. A unique problem here is that the images to be reg-
istered contain serious steak artifacts, which may adversely
affect the accuracy of the derived motion model, and the
error can propagate into the final 4DCBCT images. Never-
theless, the process may prove to be favorable because of
greatly reduced view-aliasing artifacts. The performance of
this method is shown later with a simulation study where the
registration was done based on a free-form Spline �BSpline�
model. The simplicity and yet accuracy of the BSpline
method make it a preferred tool for many clinical
applications.20–25 More details about this registration algo-
rithm can be found in Ref. 22.

II.B.2. Register planning CT to 4DCBCT phased
image

Note that in radiation therapy, it is often the case that a
patient has already had a 3D or 4D CT scan for the treatment
planning before any radiation delivery. In such case, an
artifact-free volumetric image can be assumed available prior
to the 4DCBCT scan on the treatment day. Considering res-
piration motion, this CT image should be one phase of 4D
CT images or a breath-hold CT scan. The idea is to register
each phase of the 4DCBCT images to this artifact-free 3D
image to derive corresponding deformation with respect to
the specific phase of the CT image. The deformation of the
4DCBCT phases with respect to each other can be subse-
quently obtained by calculating the relative movements.
Since only one of the two images being registered has arti-
facts, it is expected that the accuracy will be improved over
the first procedure. Again, the performance of this method is
evaluated with the simulation study later in this article.

II.B.3. Registration from image space to projection
space

Although the reconstructed 4DCBCT phase images con-
tain view-aliasing artifacts, one should realize that the arti-
facts are not originally present in the raw data but are gen-
erated later during the reconstruction process. Therefore, we
may avoid the drawback of using a low-quality reconstructed
image in deriving the motion model by registering the 3D
planning CT directly to the CBCT raw data �after phase sort-
ing�. Note that the two images being registered are in differ-
ent spaces; in the following, we present a simple algorithm
for such a registration task using a BSpline model.

Similar to the conventional image registration using de-
formable models, the motion of the object is described by
g�x ; t�= f�x+u�x ; t��, where f�x� represents the 3D image
obtained from the planning CT scan, g�x ; t� is the same ob-
ject at a particular phase t during the 4DCBCT scan, and
u�x ; t� defines the corresponding deformation for point x at
that phase. With the BSpline model, the deformation is de-
fined on a sparse, regular grid of control points �n placed
over the CT image. When a point is not on the grid, the
associated deformation is calculated by the BSpline interpo-

lation as follows:
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u�x;t� = �
n

�n,t�
�3��x − �n

�x
� , �1�

where ��3��x�=��3��x���3��y���3��z� is a separable cubic
BSpline convolution kernel, �n,t are the values for the control
points at phase t, and �x controls the grid spacing in each
dimension.

To register the CBCT projections with the planning CT
image, we adopt the metric of sum of squared difference,

���� = �
i
�Yi − �

j

Aijgj�2
= �

i
�Yi − �

j

Aij f j�x + u��2
,

�2�

where Yi is the total attenuation along the ith projection ray,
j is the index of the image voxel, and A is the cone-beam
projection matrix. For simplicity, the phase index t is ne-
glected here. Given the projection data Y and planning CT
image f , the deformation field u at a particular phase can be
found by minimizing the above objective function. General-
purpose algorithms can be applied to solve the optimization
problem, and in this work the LBFSG algorithm is used,26

which requires the calculation of the first derivative of the
cost function �. It can be shown that Eq. �2� has a closed-
form derivative that can be calculated explicitly. For a simi-
lar derivation, readers are referred to the original work by
Zeng et al.,27,28 of which the method B3 can be understood
as a variation.

II.C. Simulation studies

The above model-based recontruction method is validated
with numerical simulations under 2D fan-beam geometry
and 3D cone-beam geometry. The parameters for the simu-
lations are similar to the real setup of a Varian Trilogy ma-
chine �Varian Medical Systems, Palo Alto, CA�, where the
focal length of the fan beam or cone beam is 150 cm, and the
radius of the detector rotation is 50 cm. The fan-beam simu-
lation has 1024 samples spaced by 0.388 mm, and 2048 pro-
jection views were simulated with projection angles evenly
spanned over 360°, while the cone-beam simulation consists
of 1024�768 pixels in each of the total 1200 projections
with a pixel size of 0.388 mm. The object used in the fan-
beam simulations came from one slice of the CT images of a
patient, which contained 512�512 pixels with the pixel size
of 1.0 mm. For the cone-beam simulation, the 80 slices are
used with slicethickness of 2.5 mm.

To include the effect of the respiratory-induced motion,
we imposed an artificial perodically changing deformation
field on the image during the simulations. Specifically, a
maximum deformation is determined by registering the in-
hale and exhale phases of a patient 4DCT scan. The defor-
mation of an intermediate phase is then obtained by linearly
scaling down the maximum deformation field with a scaling
factor s=cos2��t /T�, where t is the acquisition time, and T is
the respiration period. For the fan-beam case, the motion is
restricted in the axial plane, while for the cone-beam geom-
etry, the motion is fully 3D. The period of the simulated

respiratory motion is 4 s. In reality, irregular patient respira-
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tion is possible, which may affect the accuracy of phase bin-
ning in 4DCBCT. However, this was not considered in our
simulations because the focus of this paper is the reduction
of the view-aliasing artifacts.

II.D. Patient study

A lung cancer patient had a multiple-gantry-rotation
�MGR� 4DCBCT scan in our clinic, and his 4D images were
used to evaluate our proposed approach. Due to the limit
access of the available data, only the method described in
Sec. 2.1.1 was tested. The 4DCBCT was acquired with a
Trilogy system �Varian Medical Systems, Palo Alto, CA�.
For the MGR 4D scan, the x-ray tube current was set to
32 mA, and four gantry rotations were performed at a speed
of 6°/s. Each rotation �slightly over 360°� consisted of over
680 projections, and the effective area of each acquired pro-
jection image was 397.312 mm�297.984 mm, containing
1024�768 pixels. The average breathing cycle of the patient
was 4.2 s. The 4DCBCT images were obtained by retrospec-
tive sorting of the MGR data into 6 phases and subsequently
reconstructing the rebinned data. More details about this
4DCBCT technique can be found in Ref. 16. To evaluate the
proposed 4D image enhancing method, the 4D phases were
registered to the 0% phase with a BSpline deformable model
and then superimposed. The resultant phase-0% image was
then compared with the original 4DCBCT for several axial
slices to demonstrate the differences.

III. RESULTS

III.A. Fan-beam simulation study

The fan-beam simulated projection data are shown in
Figs. 2�a� and 2�b�, where the left is from the static CT image
and the right is from the same object with the artificial in-
plane deformation. It is seen that the object motion during
the scan generated a large amount of inconsistency in the
projection data �Fig. 2�b��. To show its effect on the resultant
image, in Figs. 2�c� and 2�d�, the corresponding recon-
structed images are compared, where artifacts such as blur-
ring, doubling, distortion, and streak artifacts are observed in
the motion contaminated image �Fig. 2�d��.

The simulated projections of the continuously deformed
image were retrospectively sorted into eight phases. Five of
the reconstructed phases from the peak inspiration to the
peak expiration are illustrated in Fig. 3�a�, and a zoomed-in
image of phase 1 is shown in Fig. 3�b�. Compared with the
reconstructed images in Figs. 2�c� and 2�d�, it can be found
that the motion blurring is greatly reduced, and the boundary
of the primary tumor became much clearer after the phase
sorting. However, some low contrast structures �for example
the aorta, muscle, etc.� are lost due to the view-aliasing
streak artifacts.

Three enhanced images using the proposed approach are
shown in Fig. 4 corresponding to the three motion model
derivation techniques. The top row in Fig. 4 shows the de-
rived deformation between phase 1 and phase 4, where from

the left to the right are using “4D phase-to-phase registra-
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tion” �method B1�, “CT image to 4D phases” �method B2�,
and “CT image to CBCT projection” �method B3�, respec-
tively. The corresponding reconstructed images �at phase 1�
are shown in the bottom row. We find no significant artifacts
in the reconstructed image, even with certain errors in the
derived motion model �see Fig. 4�a� the circular pattern in
the deformation field due to registering CBCT images con-
taminated with view-aliasing artifacts�. The image enhancing

FIG. 2. Simulated projections and their corresponding reconstructed images.
object with artificial deformation.

FIG. 3. �a� Five examples of the reconstructed phases after the phase sorting
the first reconstructed phase where it is found that the motion blurring i

view-aliasing artifacts.
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approach using any of the three motion models improved the
image quality over the regular phase-resolved image �Fig. 3�,
and the method as described in B3 by matching CT image
with CBCT raw data generated the best final images �less
streak artifacts near the boundary of the field of view�, be-
cause a relatively more accurate motion model is applied.

In Figs. 5�a� and 5�b�, we quantitatively compared the
CBCT images by plotting vertical profiles passing through

left column is from the static object, and the right column is from the same

e simulated projection data of the moving object; �b� a zoomed-in image of
uced by phase binning, but some low-contrast structures are lost due to
The
of th
s red
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the tumor. It is seen from Fig. 5�a� that the enhanced
4DCBCT �ED_4DCBCT� images resulted from three mo-

FIG. 4. Top row, from the left to the right, illustrates the derived deformatio
row shows the corresponding reconstructed images for phase 1 using the pr
FIG. 5. Comparison of vertical profiles passing through the tumor.
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tion models have similar accuracy in terms of the CT num-
bers. The difference from the phantom �ground truth� is
mainly due to the filtered backprojection reconstruction pro-
cess. In Fig. 5�b�, the enhanced 4DCBCT �using motion
model B1� is compared with 3DCBCT and regular 4DCBCT.
It can be seen that the ED_4DCBCT results in less noise
�compared with regular 4DCBCT� while maintaining the
correct tumor profile.

Furthermore, the contrast-to-noise ratio �CNR� as an im-
age metric is compared for the CBCT images, defined as
CNR= �	S
− 	S0
 � /�, where 	S
 and 	S0
 denote the average
signal within a region of interest for the tumor and soft tis-
sue, respectively, and � denotes the standard deviation
within the tumor. The calculated CNR for regular 4DCBCT
is 1.186; for enhanced 4DCBCT, the CNRs are 5.487, 5.584,
and 5.589 for motion models B1, B2, and B3, respectively.

III.B. Cone-beam simulation study

Figure 6 shows the 4D cone-beam simulation results at
respiratory phase 1. From the top to the bottom rows are the
phantom images, the motion blurred 3DCBCT images, the
regular 4DCBCT images, and the enhanced 4DCBCT im-
ages, respectively. From left column to the right column are
the axial, coronal, and sagittal views. The motion model ap-
plied to the enhanced 4DCBCT image reconstruction was
derived using method B2 by registering each phase of the
regular 4DCBCT to the peak-inhale phantom images. Again,
dramatic improvement �Fig. 6�d� over Fig. 6�c�� is observed
by using the proposed approach for the cone-beam study.
The CNRs for the regular 4DCBCT and the enhanced
4DCBCT are 0.92 and 4.43, respectively.

III.C. Patient study

The enhanced 4DCBCT images were obtained for the pa-

d obtained by using methods B1, B2, and B3, respectively, and the bottom
d image enhancement technique.
n fiel
opose
tient using the proposed approach and the motion model de-
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rived with method B1. In Fig. 7 the resultant image at phase
1 is shown along with the image of the same phase before
the enhancement. Because MGR technique was used for the
4D CBCT scan for the patient, the view-aliasing artifacts in
the original 4DCBCT images are not prominent. The im-
provement by using the proposed approach is not dramatic as
the previous simulation studies. The CNRs are 3.82 and 3.97
for the regular 4DCBCT and enhanced 4DCBCT, respec-
tively. It is found that the proposed technique results in a
smoother image in the uniform region leading to a higher
CNR. However, it is also noticed that the process may reduce
the spatial resolution. The trade-off between the CNR and
the spatial resolution using the proposed model-based recon-
struction technique requires further systematic study, which
is beyond the scope of this work.

IV. DISCUSSION AND CONCLUSION

One goal of 4DCBCT is to remove the respiratory motion
induced artifacts in the reconstructed images to increase the
accuracy of target localization and dose calculation. Differ-
ent from conventional 4DCT,29–31 4DCBCT acquisition with
an onboard imager usually has a much slower speed of about
1 min per rotation, and due to the limited total scan time in
practice, undersampling is often an issue resulting in se-
verely degraded 4D images, which sometimes are even
worse than the motion contaminated 3D images. The ap-
proach proposed in this article reconstructs the image of any

FIG. 6. Simulation study using cone-beam geometry. From left to right are
4D phantom; row �b� is the 3DCBCT showing the motion blurring artifacts;
row �d� is the enhanced 4DCBCT images.
particular phase by introducing additional information from
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other phases, effectively increasing the sampling rate and
improving the image quality. In general, the approach relies
on the accuracy of the motion model that relates different
projections. We have demonstrated with 2D simulations that
the best way to derive the motion model is to register the
artifact-free CT images with the CBCT projections, if a plan-
ning CT scan has been performed prior to the CBCT scan.
Though the registration accuracy in 3D geometry may be
different from 2D geometry, these basic principles and rela-
tive performances observed in this article are expected true.
As an example, the real patient case shown in this article
demonstrated the feasibility of the proposed method under
the worst condition �low view-aliasing artifacts in the 4D
images leave little space for further improvement, and low
accuracy in motion derivation by using method B1 limits the
performance of the proposed approach�.

As it is known, the radiation dose has been one of the
major concerns in CBCT imaging because of the repeated
use for a given patient. With the proposed approach, it is
possible to lower the x-ray tube current, hence the radiation
exposure for the 4DCBCT scan while maintaining a mean-
ingful 4D image, because introducing additional information
of other phases during reconstruction effectively increases
the photon statistics. This is similar to the case of 4D fan-
beam CT studied earlier by our group.32 The efficacy of the
approach in improving the trade-off between the controlled
radiation exposure and the resultant CBCT image quality is

ages of axial, coronal, and sagittal views, respectively. Row �a� shows the
�c� is the regular 4DCBCT images showing the view-aliasing artifacts; and
the im
row
being investigated.
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It should be noted that the proposed 4DCBCT enhancing
technique needs a computation of the deformation field be-
fore the image reconstruction, which takes extra time com-
pared with regular CBCT imaging. Currently, a 3D image-
to-image registration with an image size of 512�512�64
will take approximately 30 min. The image-to-projection
registration method generally takes longer because of the cal-
culation of the forward projections. The computational time
makes it difficult for online applications in the treatment
room. However, the development of techniques in speeding
up the algorithms as well as the computer hardware is highly
promising, which we believe will make the 4DCBCT imag-
ing fast and reliable in the near future. In addition, the
4DCBCT image quality may be further improved by the ad-
vanced reconstruction algorithm and helical scan mode.33–35

In conclusion, we have developed a novel approach to
enhance the 4DCBCT image quality. The enhancement is
achieved by increasing the angular sampling rate of each
phase of the 4DCBCT data using information from other
phases, thus the view-aliasing artifacts commonly seen in the
limited-time scan 4DCBCT images are eliminated or signifi-

FIG. 7. 4DCBCT images of a patient. The left column shows three arbitrary
images after the proposed enhancement with motion model derived by usin
cantly reduced. The approach opens new opportunities for

Medical Physics, Vol. 34, No. 9, September 2007
4DCBCT to be a more useful tool that may substantially
improve the current cancer management in radiation oncol-
ogy.
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The purpose of this work is to develop a novel strategy to automatically map organ contours from
one phase of respiration to all other phases on a four-dimensional computed tomography �4D CT�.
A region of interest �ROI� was manually delineated by a physician on one phase specific image set
of a 4D CT. A number of cubic control volumes of the size of �1 cm were automatically placed
along the contours. The control volumes were then collectively mapped to the next phase using a
rigid transformation. To accommodate organ deformation, a model-based adaptation of the control
volume positions was followed after the rigid mapping procedure. This further adjustment of
control volume positions was performed by minimizing an energy function which balances the
tendency for the control volumes to move to their correspondences with the desire to maintain
similar image features and shape integrity of the contour. The mapped ROI surface was then
constructed based on the central positions of the control volumes using a triangulated surface
construction technique. The proposed technique was assessed using a digital phantom and 4D CT
images of three lung patients. Our digital phantom study data indicated that a spatial accuracy better
than 2.5 mm is achievable using the proposed technique. The patient study showed a similar level
of accuracy. In addition, the computational speed of our algorithm was significantly improved as
compared with a conventional deformable registration-based contour mapping technique. The ro-
bustness and accuracy of this approach make it a valuable tool for the efficient use of the available
spatial-tempo information for 4D simulation and treatment. © 2007 American Association of
Physicists in Medicine. �DOI: 10.1118/1.2780105�
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I. INTRODUCTION

A longstanding question in radiation therapy is how to accu-
rately and efficiently segment a region of interest �ROI� such
as a tumor target volume or a critical structure.1–6 In spite of
intense research efforts in the past few decades, ROI seg-
mentation remains a time consuming task in treatment plan-
ning. In most cases, the segmentation is performed manually
in a slice-by-slice fashion, creating a strong need for auto-
mated segmentation tools in the clinics. The introduction of
four-dimensional computed tomography �4D CT� in radia-
tion oncology practice further amplifies this need as the num-
ber of images to be segmented is increased dramatically.7–15

Generally, a 4D CT scan consists of 5–10 sets of three-
dimensional �3D� CT images, each representing the patient
anatomy at a specific phase of respiration. For 4D radiation
therapy applications, it is labor intensive to follow the 3D
approach of manual segmentation due to the immense work-
load associated with this process.

A natural way to deal with the 4D segmentation problem
is to start with a known set of contours for a selected phase
and map these contours onto all other phases. ROIs for the
selected phase are first manually contoured, similar to that
done in treatment planning based on 3D CT image data sets.
The mapping procedure can be accomplished with the aid of
a computer algorithm that registers an arbitrary point on the

selected phase to the corresponding points on all other
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phases. While conceptually simple, the implementation of
this idea is not straightforward. An intelligent algorithm ca-
pable of providing accurate point-to-point correspondence
between the phased images, or at least between points within
the ROIs, is the key to the success of this approach. Various
studies have investigated algorithms to automatically map
contours using deformable image registration and surface
mapping techniques. One method is based on a deformable
registration model.16–18 This method has limited accuracy,
especially in the regions proximate to the interfaces of dif-
ferent organs, and is brute-force in nature, which entails a
large amount of computations. In reality, contour mapping is
a regional problem and a global association of the phase-
based images is neither necessary nor efficient. Surface map-
ping achieves the stated goal of contour transformation by
iteratively deforming the ROI contour-extended surface until
the optimal match with the reference is reached.2,19–22 Nu-
merous surface mapping techniques, such as spatial parti-
tioning, principal component analysis, conformal mapping,
rigid affine transformation, deformable contours, and warp-
ing based on the thin-plate spline �TPS�, have been devel-
oped over the years and the end point of all of these tech-
niques is a mapping between topological components of the
input surfaces that allow for transfer of annotations. This
type of computation is inherently more efficient in compari-

son with the deformable model-based approaches, but it suf-

40230…/4023/7/$23.00 © 2007 Am. Assoc. Phys. Med.
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fers from the fact that the resultant mapping heavily depends
on the model used and the fact that the model parameters in
the calculations are not physically transparent.

In this work, we combine the useful features of the two
different types of techniques for contour mapping. Our work-
ing hypothesis is that information contained in the boundary
region is often sufficient to guide the contour mapping pro-
cess without relying on the use of an ad hoc surface deform-
ing model. In the proposed technique, the neighborhood in-
formation of the contour surface is captured by a series of
small cubic �or other shaped� control volumes placed around
the surface.23 The collection of the centers of the control
volumes is a representation of the contour surface. The ROI
contour mapping proceeds iteratively under the guidance of
the information contained in the control volumes. The pro-
posed method is illustrated by a digital phantom experiment
and three clinical lung case studies. The results suggest that
the technique is capable of automatically mapping contours
among the 4D CT phases with clinically acceptable accuracy.

II. MATERIALS AND METHOD

II.A. Software platform

The Insight Toolkit24 �ITK� and the Visualization
Toolkit25 �VTK�, which are open source cross-platform
C�� software toolkits and are freely available for research
purposes, were used in this study. A variety of methods have
been programmed into the ITK platform for image registra-
tion and segmentation. ITK was used for automatic mapping
while VTK was mainly used for 3D visualization and con-
tour construction.

II.B. Image acquisition

The 4D CT image data sets for three lung cancer patients
were acquired with a multislice helical CT scanner �Discov-
ery ST, GE Medical System, Milwaukee, WI�. The collected
data were sorted into ten phase bins.10 The 4D CT image sets
for all patient studies were reconstructed with a 2.5 mm slice
thickness. The size and pixel resolution of each CT slice was
512�512 and 0.98�0.98 mm2, respectively. The 4D CT
images were transferred through DICOM to a personal com-
puter with a Pentium IV �2.66 GHz� processor for image
processing. One of the phases, which is referred to as the
template phase, was selected for manual segmentation of the
ROIs. We refer to the other phases in the 4D CT image set as
the target phases with corresponding target contours. The
enrolled patients in this study were under an Institutional
Review Board approved protocol.

II.C. Placement of control volumes along the ROI
contour surface

The task of mapping a contour is to find its corresponding
location on the target phase for an arbitrary point on the
contour drawn on the template image. In general, the image
feature surrounding a contour point can be used as a signa-
ture of the point to aid the search for its corresponding po-

sition on the target phase. In this study, the image feature at
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each point was captured by introducing a cubic control vol-
ume ��1 cm in size� centered at the point. The manual ROI
delineation was first performed on the template phase using
the Varian Eclipse TPS �Varian Medical Systems, Palo Alto,
CA�. Afterwards, the contours were exported from the TPS
to a local computer for contour propagation. The exported
contours are polygons on individual slices, and the vertices
of the polygons were used as the locations of control vol-
umes. This is depicted in Fig. 1, where the curve represents
the contour and the squares represent the control volumes.
The center of each control volume was set at a contour point,
typically 0.5−1 cm from the next point. More control vol-
umes are placed through interpolation if the spacing between
two consecutive control volumes is greater than 1 cm. The
collection of these points represents the ROI contour surface.

The contour mapping was carried out in three steps: �i�
mapping the introduced control volumes collectively using a
rigid image registration algorithm; �ii� iteratively fine-tuning
the 3D positions of the control volumes to determine the
deformed ROI contour surface; and �iii� reconstructing the
new contours by cutting the deformed surface slice-by-slice
along the transversal, sagittal, or coronal direction. This pro-
cedure is shown in Fig. 2 and described in detail below.

II.D. Collective mapping of control volumes

After a series of control volumes were placed along the
segmented contours on the template phase, we mapped them
onto the target phase collectively �i.e., all the control vol-
umes were treated as an entity� using a rigid image registra-
tion algorithm.24 A feature of the rigid collective mapping is
that the relative distances and orientations of the control vol-
umes remain the same during the course of mapping, result-
ing in an approximate ROI contour surface in the target
phase and providing a good start for further adjustment of
the contour shape to accommodate the organ deformations.

FIG. 1. A schematic drawing of the placement of control volumes �shown as
squares� on the manually segmented contour �depicted curve�. Each control
volume is typically �1 cm in cubic shape as shown in the zoomed image.
No interpolated volumes are displayed.
We note that using a rigid mapping is not a necessary step
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and other methods capable of providing a reasonable initial
estimate of the ROI surface may also be used.

The collective mapping of the control volumes was per-
formed under the guidance of a normal cross correlation
�NCC� metric24 defined by

f = −

�
�

�
�

�
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I��xi�I��xi��

��
�
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where I��xi� is the intensity at a point xi in a control volume
indexed by � in the target phase and I��x j�� represents the
intensity at a point x j� in a control volume indexed by � in
the template phase. In Eq. �1�, x and x� are related by a rigid
transformation T, where Tx�=x. We calculated the transfor-
mation matrix T, which maps the ensemble of control vol-
umes from the template phase to the target phase. The lim-
ited memory Broyden–Fletcher–Goldfarb–Shannon
algorithm �L-BFGS� algorithm26–30 was used to optimize the
metric in Eq. �1� with respect to the transform parameters.
The details of this algorithm have been described
elsewhere18,31 and will not be repeated here. During the
course of the control volume mapping, an iterative calcula-
tion based on the L-BFGS algorithm was carried out until a
preset maximum number of iterations were met or until the
NCC function stopped improving.

II.E. Fine tuning of the mapped control volumes

In the absence of deformation, the ROI contour of the

FIG. 2. Flow chart of the automatic contour mapping process for 4D CT
images.
target phase is obtained by connecting the centers of the
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rigidly mapped control volumes. In a more general case
where deformation does exist, the contour from the rigid
mapping serves as an initial estimate of the ROI contour in
the target phase. Further positional adjustment of the control
volumes is needed to accommodate the deformation of the
ROI. The final positions of the control volumes, which define
the ROI surface, are determined by balancing the self-energy
and the interaction energy, which drive the control volumes
to their corresponding locations while maintaining similar
shape integrity of the contour.

Mathematically, the above adaptation process is modeled
by two “energy terms.” The first term is referred to as “self-
energy” and the second term describes the “interaction”
among the control volumes. Self-energy tends to drive a con-
trol volume toward a position where the neighborhood envi-
ronment resembles itself most. For each control volume in
the template image, this process was driven by the NCC
between the volume and its corresponding locations in the
target image. The interaction term among the control vol-
umes intends to maintain the integrity of the control volume
cluster as a whole and prevents any unrealistic control vol-
ume configuration from happening. The interaction energy
term is described by

Einteraction = Mtemplate − Mtarget, �2�

where Mtemplate is defined as the correlation between a con-
trol volume in the template phase and the neighboring con-
trol volumes in the target phase, Mtarget represents the corre-
lation between the control volume in the target phase and the
neighboring volumes in the template phase. These two terms
take into account the neighborhood environment of the con-
trol volume being adjusted and apply a constraint on the
possible form of the control volume configuration. In a
sense, the interaction energy in Eq. �2� exerts a restoring
force when the position of a control volume is varied with
respect to its neighbors. The interaction force is important in
preventing the control volumes from moving to unrealistic
positions simply driven by the self-energy and in retaining
the shape integrity of the ROI surface. For simplicity, only
the adjacent control volumes were considered when comput-
ing the interaction energies. The final position of each con-
trol volume was determined by minimizing the sum of the
self-energy and interaction energy terms.

A simple searching algorithm was implemented to find the
minimum of Eq. �2� and thus the final configuration of the
control volumes. The algorithm was realized using an ex-
haustive search in the defined local region around the control
volume and was based on three dimensional basis. For each
rigidly mapped control volume on the target phase, we de-
fined a small region of �3 cm around the central point in
the volume. The search region of 3 cm was chosen primarily
to accommodate maximum deformation of tissue. 3 cm is a
very conservative value because the tissue deformation in
two adjacent phases barely exceeds this value �the maximum
deformation occurring between the inhale and exhale phases
may reach �3 cm�. Equation �2� was then minimized to
determine the optimal control volume location within this

region. This process was repeated for each separate control
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volume. Due to the fact that the interaction energy term de-
mands the information from the neighboring volumes, ad-
justing the location of each control volume changes the po-
sition of the previously fine-tuned volume. Therefore, several
cycles of this process were needed to obtain the truly optimal
positions of all the control volumes. We found �see digital
phantom study in results section� that 2–3 complete adjust-
ment cycles were adequate to find the optimal control vol-
ume configuration.

II.F. Reconstruction of target contours

Upon completion of the control volume mapping and ad-
aptation, the centers of each control volume were identified.
A ROI surface was constructed with these central points us-
ing a triangulated surface construction technique which uses
marching cubes32 method and triangular surface decimation
of VTK.25,33 The intersection of the surface with each CT
slice was superimposed on top of the image in order to vi-
sualize the contour in a conventional fashion. These contours
can be exported as ASCII or DICOM-RT format for treat-
ment planning.

II.G. Evaluation of the algorithm and case study

Evaluation of a contour mapping algorithm is a difficult
task because of the general lack of a gold standard for com-
parison. The proposed control volume based 4D contouring
technique was first evaluated with a digital phantom experi-
ment. In this study, a thoracic CT image was deformed in-
tentionally using a known deformation matrix which was
introduced by drifting the positions of each control volume
along the contour with known sizes. Specifically, for a con-
trol volume i, we assign the following displacements:

D�x,y� = i * 0.01 and D�z� = i * 0.001 if i

= 0, 1, . . . , N/2 �3�

or

D�x,y� = �N − i� * 0.01 and D�z� = �N − i� * 0.001 if i

= N/2 + 1, N/2 + 2, . . . N , �4�

where N is the total number of control volumes on the ROI
contour. The artificially deformed image serves as a “new
breathing phase” relative to the original image. The “ground
truth” lung surface in the target phase was attainable by
transforming the original contours with the same deforma-
tion matrix. The manually delineated lung contours in the
original image were also mapped using the proposed novel
control volume based approach. A comparison of the mapped
lung surface with the ground truth allowed us to quantita-
tively assess the success of the proposed approach.

The control volume based contour mapping technique
was also applied to three 4D CT patient scans. A physician
manually delineated the lungs and GTV for each scan on a
selected phase �for example, the exhale phase�. These con-
tours were then mapped onto all other phases using the pro-
posed technique. Visual inspection was used to evaluate the

three patient studies. Although it is less quantitative, visual
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inspection is a cnvenient way for rapid assessment of a seg-
mentation calculation, especially in a case where the ground
truth contours do not exist.

III. RESULTS

III.A. Digital phantom study

The thoracic CT images before and after the intentionally
introduced deformation are shown in Fig. 3. The manually
delineated lung contour is shown in Fig. 3�a�, while the
ground truth contour obtained by transforming the manual
contour with the known transformation matrix is plotted in
Fig. 3�b�. The contour from the proposed approach is shown
in the same figure. To be comprehensive, the rigidly mapped
contour, which served as the start of the model-based refine-
ment, is also plotted in Fig. 3�b�. Clearly, it is significantly
deviated from the lung boundary. Visual inspection of the
ground truth contour and contour after refinement in Fig.
3�b� indicated that the gold standard and the mapped con-
tours are similar, despite the fact that the intentionally intro-
duced deformation field is quite large �the displacement of
the some of the voxels is as large as 2.0 cm�. The mean and
maximum separations between the two sets of contours were
found to be 1.5 and 2.5 mm, respectively.

To better understand the mapping process, we examined
the behavior of each energy term �metrics� during the course
of the contour mapping. In Fig. 4�a� we plotted the values of
self-energy, interactive energy, and total energy of one of the
control volumes in the process of positional adjustment in
the surrounding area of the control volume in the deformed
image. For this particular control volume, the minimum of
Eq. �2� was reached after searching the first 30 points. For
control volumes located in regions where the deformation is
large, more searching points may be required to reach the
minimum. It is also interesting to show how the average
metric value of all the control volumes evolved. In Fig. 4�b�
the metric value is depicted as a function of the calculation
process. The first point, corresponding to step 0, is the metric
before mapping. Step 1 refers to the system after rigid map-
ping. The metric at this point is decreased but does not reach

FIG. 3. Validation process of proposed algorithm using a digital phantom.
�a� Original image and contour; �b� Artificially deformed image and contour
�ground truth contour� together with contour after fine tuning. These two
contours are almost indistinguishable. The contour after rigid mapping is
also shown.
the minimum. The third point shows the metric after each of
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the control volumes is fine tuned sequentially. To obtain the
optimal contours two more cycles of fine tuning were per-
formed; however, the improvement with further iterations
was not significant.

III.B. Patient studies

The proposed technique was assessed using 4D CT im-
ages of three lung cancer patients. Figure 5 shows the manu-
ally delineated contours on the 4D CT scans of two lung
cancer patients for lung and GTV, respectively. The CT im-
ages and contours are displayed in axial, coronal, and sagittal
views. Contours were drawn on the exhale phases �phase 1�
for patient 1 �top row in Fig. 5�. The GTV contour for patient
3 was delineated on the inhale phase �phase 5� as shown in
Fig. 5 bottom row. For patients 1 and 2 the mapping of the
lung contours was studied. For the third patient, GTV con-
tour mapping was investigated.

The lung contours before and after the control volume-
based mapping for the first patient are presented in Fig. 6. To

FIG. 4. �a� Energies �self, interaction, and total energy� as a function of the
in the target image �see text for details�. �b� The metric value versus step du
of all the involved control volumes.

FIG. 5. The template CT images and manually segmented contours for two
lung cancer patients �top row: patient 1; bottom row: patient 3� on axial,
coronal, and sagittal views. Right lung of patient 1 and GTV of patient 3

were manually delineated, respectively.
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better visually evaluate the results, the CT images and con-
tours for this patient are displayed in axial, coronal, and sag-
ittal views as in left, middle, and right columns, respectively.
Target phases 4, 7, and 10 are selected to demonstrate the
results as in the top, middle, and bottom rows in Fig. 6. The
template contours and rigidly mapped contours were shown
and significantly deviated from the ROI boundary. The final
contours after the model-based adaption are presented as
well.

When the lung deformation is small, for example, in
phase 10 of patient 1 �see Figs. 6�g�–6�i��, the rigidly
mapped contours closely resemble the target contours. Fine
tuning merely provides limited adjustment of the contours.
For phases with large deformations �e.g., phases of 4 and 7

hing points in the surrounding area of a randomly selected control volume
the course of the contour mapping. The metric values are the average NCC

FIG. 6. Axial, coronal, and sagittal views of CT images along with lung
contours for the first patient. Top row: phase 4; middle row: phase 7; bottom
row: phase 10. Rigidly mapped and target contours are displayed. Template
searc
ring
contour is also overlaid on displayed phases.



4028 Chao et al.: Automated contour mapping for 4D radiation therapy 4028
of this patient�, the model-based adjustment after the rigid
contour mapping plays an important role in obtaining opti-
mal contour arrangement. In case of the lung contours, our
analyses of the patient data indicate that the accuracy of our
contour mapping technique is within one pixel in the supe-
rior part of the lung, where respiration induced deformation
is small. In other parts, the average error on the target con-
tours is estimated to be less than 2.5 mm.

The mapped GTV contours for phases 2, 4, and 7 in the
study of patient 3 are shown in Fig. 7. The representation of
the contours is the same as in Fig. 6. For phases 4 and 7 the
deformation was relatively small and our contour mapping
algorithm performed reliably. For phase 2, which corre-
sponded to the exhale phases, significant deformation in the
ROIs was observed. Despite this less ideal case, our algo-
rithm still worked well in these phases.

IV. DISCUSSION

As in 3D radiation therapy, delineation of ROIs in 4D CT
images is a necessary step for treatment planning.34 4D seg-
mentation is required for constructing a 4D patient model
and for computing the accumulated dose of moving or de-
formed organs. One way to proceed is to draw all contours
on one of the phases of respiration and map or propagate
these contours onto the remaining phases. Various deform-
able models have been used for ROI contour mapping as
discussed in the introduction. In this work, we take a re-
gional approach based on the mapping and adaptation of the
sparsely sampled control volumes. Our approach takes ad-
vantage of the imaging features surrounding the ROI and
uses them as guidance in searching for the optimal mapped
contours while considering the shape integrity of the ROI

FIG. 7. Axial, coronal, and sagittal views of CT images along with GTV
contours for the third patient. Top row: phase 2; middle row: phase 4;
bottom row: phase 7. Rigidly mapped and target contours are displayed.
Template contour is also overlaid on displayed phases.
surface.
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The mapping of a point in one image to another is easily
achievable if a unique identifier or signature can be tagged to
the point. Here the image feature contained in a control vol-
ume is employed as a signature of the point to facilitate the
process of finding its corresponding location in the target
phases. The concept of control volume was first introduced
by Schreibmann and Xing23 and its advantages for both
intra- and intermodality image registration have been dem-
onstrated. This study represents a novel application of the
concept to 4D image segmentation. After a rigid mapping of
the contours from the template phase to the target phase, a
model-based adaptation is performed to establish a reliable
association between the ROIs in two phase specific image
sets. This adaptation takes into account the deformation of an
object and ensures the overall integrity of the resultant ROI
surface. The calculation is local in nature, which improves
both computational efficiency and convergence behavior.

A quantitative comparison of different deformable regis-
tration algorithms is a difficult task because of the multifac-
eted and even subjective nature of the problem. A unbiased
and meaningful comparison may entail the efforts from mul-
tiple institutions.35 Thus we defer the detailed comparative
study to the future. However, we wish to emphasize that the
chief advantage of the proposed technique is its computa-
tional efficiency. Because of the regional nature of the calcu-
lation, our general finding is that the new algorithm is at least
an order of magnitude faster than the whole image based
approach.17,18 Enormous saving in the memory usage in the
proposed approach is also self-explanatory and highly desir-
able feature in practice.

A common problem in image segmentation and contour
mapping studies is the lack of quantitative validation. In the
study of Lu et al.,36 for example, the accuracy of a deform-
able model-based contour mapping technique was evaluated
purely based on visual inspection. The same approach was
employed in many other previous investigations.4,6,16,18 In
our study, in addition to the visual evaluation, a set of digital
phantom experiments was introduced to evaluate the success
of the proposed technique. By applying a prespecified defor-
mation matrix to the original image, the ground truth of the
contour propagation is readily known. Therefore, the experi-
ments provide a quantitative test of the proposed algorithm.
In general, we found that a spatial accuracy better than 2.5
mm is achievable using our technique.

V. CONCLUSION

The development of 4D radiation therapy involves the use
of a large number of images acquired at different times
and/or with different modalities. Clinical implementation of
the new IGRT paradigm is, to a large extent, bottlenecked by
the inability to accurately and efficiently register images and
segment the ROIs. In this work, a mathematical framework
for control volume-based contour mapping has been pro-
posed for 4D radiation therapy. We demonstrated that the
information contained in the boundary region is sufficient to
guide the contour mapping process without registering the

whole image or relying on the use of an ad hoc surface
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deforming model. The results showed that the control
volume-based contour mapping algorithm is capable of ro-
bustly and accurately mapping contours from one phase of a
4D CT to the remaining phases. Our technique decreases the
workload involved in 4D CT ROI segmentation and provides
a valuable tool for the efficient use of available spatial-tempo
information for 4D simulation and treatment.
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AUTOMATED CONTOUR MAPPING WITH A REGIONAL DEFORMABLE MODEL
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ALBERT KOONG, M.D., AND LEI XING, PH.D.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA

Purpose: To develop a regional narrow-band algorithm to auto-propagate the contour surface of a region of inter-
est (ROI) from one phase to other phases of four-dimensional computed tomography (4D-CT).
Methods and Materials: The ROI contours were manually delineated on a selected phase of 4D-CT. A narrow band
encompassing the ROI boundary was created on the image and used as a compact representation of the ROI sur-
face. A BSpline deformable registration was performed to map the band to other phases. A Mattes mutual infor-
mation was used as the metric function, and the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm
was used to optimize the function. After registration the deformation field was extracted and used to transform
the manual contours to other phases. Bidirectional contour mapping was introduced to evaluate the proposed tech-
nique. The new algorithm was tested on synthetic images and applied to 4D-CT images of 4 thoracic patients and
a head-and-neck Cone-beam CT case.
Results: Application of the algorithm to synthetic images and Cone-beam CT images indicates that an accuracy of
1.0 mm is achievable and that 4D-CT images show a spatial accuracy better than 1.5 mm for ROI mappings be-
tween adjacent phases, and 3 mm in opposite-phase mapping. Compared with whole image–based calculations,
the computation was an order of magnitude more efficient, in addition to the much-reduced computer memory
consumption.
Conclusions: A narrow-band model is an efficient way for contour mapping and should find widespread applica-
tion in future 4D treatment planning. � 2008 Elsevier Inc.

Deformable model, Image registration, Contour mapping, IGRT.
INTRODUCTION

Segmentation of a region of interest (ROI), such as a tumor

target volume or a sensitive structure, is an important but

time-consuming task in radiotherapy (1–6). With the emer-

gence of four-dimensional (4D) imaging and adaptive radio-

therapy, the need for efficient and robust segmentation tools

is even increasing (7–11). Because of dramatically increased

numbers of images, it becomes impractical to manually seg-

ment the ROIs slice by slice as in current three-dimensional

radiotherapy practice. A natural solution to the 4D computed

tomography (4D-CT) segmentation problem is to delineate

the ROIs on a selected phase and then propagate the contours

onto other phases using a mathematical model. Along this

line, deformable model–based contour mapping has been

implemented by a few groups (12–14). Although feasible,

the calculation is global in nature and thus computationally

intensive. In addition, the accuracy of the mapped contours

may be compromised because the registration may be

Reprint requests to: Lei Xing, Ph.D., Department of Radiation
Oncology, Stanford University School of Medicine, 875 Blake Wil-
bur Drive, Stanford, CA 94305-5847. Tel: (650) 498-7896; Fax:
(650) 498-4015; E-mail: lei@reyes.stanford.edu

Supported in part by grants from the Department of Defense
(W81XWH-06-1-0235 and W81XWH-05-1-0041), Komen Breast
Cancer Foundation (BCTR0504071), and National Cancer Institute
5

influenced unnecessarily by the image content distant from

the ROIs, which would otherwise be irrelevant to the contour

mapping process. This is especially problematic when non-

local deformable models, such as thin plate spline and elastic

model, are used. In general, contour mapping is a regional

problem, and a global association of the phase-based images

is neither necessary nor efficient.

Surface mapping techniques (15–17) represent a competi-

tive alternative to the deformable model–based approach.

The idea of surface mapping is to obtain contour transforma-

tion by iteratively deforming the ROI contour-extended sur-

face until the optimal match with the reference is found. The

calculation involves only the surface region and is thus com-

putationally efficient. Numerous surface mapping techniques

have been developed in the past, which include, to name

a few, spatial partitioning, principal component analysis,

conformal mapping, rigid affine transformation, deformable

contours, and warping based on the thin-plate spline. All of
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these techniques are a mapping between topologic compo-

nents of the input surfaces that allow for transfer of annota-

tions. Although the calculations are inherently efficient, the

results depend heavily on the model used, which may not

be generally applicable for all clinical situations because

the ROI surface is multidimensional and hardly modeled

by only a few parameters.

In this work, we present a novel regional algorithm for ROI

propagation among different 4D-CT phases. The deforma-

tion of an ROI contour-extended surface in our algorithm is

not driven by an ad hoc surface-based model but instead by

the image features in the neighborhood of the surface. The

underlying hypothesis here is that information contained in

the ROI boundary region is sufficient to guide the contour

mapping process. In the proposed algorithm the neighbor-

hood image features of an ROI are captured by a narrow

band, which is composed of all points within two surfaces

with the signed distances of �d from the ROI boundary.

The algorithm is a hybrid of the regional surface–based

model and the global deformable registration–based ap-

proach. The combination takes advantage of the desirable

features of each of these two techniques and provides a robust

and computationally efficient contour propagation tool for

4D radiotherapy.

METHODS AND MATERIALS

Software platform
The proposed contour mapping algorithm was implemented using

the Insight Toolkit (18) and the Visualization Toolkit (19), which

are open source cross-platform C++ software toolkits sponsored

by the National Library of Medicine.

Overview of the mapping process
Figure 1 depicts the overall contour mapping process. For a given

4D-CT image set, a selected phase, named the template phase, was

selected, and the ROIs were manually delineated by a physician. The

manually outlined contour was referred to as the template contour. A

narrow band encompassing the template contour was created (see

next section for details). A deformable mapping was then carried

out to propagate the band from the template phase to other phases,

referred to as target phases. Upon successful mapping of the band,

the deformation field was used to transform the template contour

to the target images.

Narrow-band representation of ROI contour
The contour manually segmented on an axial slice of the template

image has a polygon shape, and the vertices of the polygon form the

basis for constructing the narrow band. As schematically shown

in Fig. 2, a band with signed distances�d was placed along the tem-

plate contour. The regional image features contained in the band

function serve as a ‘‘signature’’ of the contour and drive the contour

mapping process. The distance between the neighboring vertices on

the contour is typically 2–10 mm, depending on the shape of the

contour. In generating the narrow band, we first created cubes

with a side length of 2d around all the vertices, as depicted by points

A and B in Fig. 2. To obtain a smooth band, between A and B three

more cubes, centered at points C, D, and E, were inserted. Point C

was chosen to be the middle point between A and B, point D the

middle between A and C, and point E the middle between C and
B. More interpolated vertex points can be introduced similarly

when needed. Figure 3 illustrates a narrow band surrounding the

lung boundary on the template phase CT image. The light green

area stands for the narrow band, and the green curve is the manual

contour. The width of the narrow band was set to be 2d = 15 mm

in our calculations. To examine the robustness of the proposed map-

ping algorithm, a variety of other bandwidths, ranging from 4 mm

through 30 mm, were also tested for one of the clinical cases.

Contour propagation
As illustrated in Fig. 1, the process of contour mapping is essen-

tially to warp the narrow band constructed above in such a way

that its best match in the target image is found. Mathematically,

the mapping process of the narrow band constitutes an optimization

problem, in which a group of transformation parameters that trans-

form the points within the band in the template phase to their homol-

ogous points in the target image. The warping of the narrow band is

quantified by a metric function, which ranks a trial matching based on

the ‘‘accordance’’ level of the image content of the band and its cor-

respondence in the target image. The calculation process is detailed

below.

Fig. 1. Flow chart of narrow band–based contour mapping proce-
dure. (a) Overall calculation process. (b) Deformable mapping pro-
cess of the narrow band.
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Fig. 2. A schematic drawing of narrow-band construction.
The input to the contour mapping software includes the narrow

band and the whole target image, which are described by the image

intensity distributions Ia(x) and Ib(x), respectively. It is worth em-

phasizing that, even though the whole target image was used, only

fractional voxels in the target image (the voxels encompassed by

the band) are involved in each iteration (a subregion surrounding

the ROI on the target image could be created and used in the calcu-

lation, but the algorithm converged so fast that after two to three it-

erations the searching was quickly confined in the neighborhood of

the optimal solution). The narrow band acts as a representation of

the ROI contour. The task is to find the transformation matrix,

T(x), that maps an arbitrary point in the band to the corresponding

point on the target image (or vice versa) so that the best possible cor-

respondence, as measured by the metric function, is achieved. The

calculation proceeds iteratively. A BSpline deformable model is

used to model the deformation of the band, but other models should

also be applicable. The spacing between the BSpline nodes was cho-

sen to be approximately 0.5 cm (smaller spacing was tested, but no

significant difference was found in the final registration results). The

displacement of a node i is specified by a vector xi, and the displace-

ment vectors (20) of a collection of nodes characterize the tissue

deformation. The displacement at a location x on the image is de-

duced by a BSpline polynomial fitting.

The Mattes Mutual Information (MMI) (21) was used as the met-

ric function for narrow-band mapping (22–25). The central concept
Fig. 3. Computed tomographic images with manual contours and the narrow bands for patient 1. The narrow bands are
shown in light green and the contours are green curves. (a) Transverse view; (b) coronal view; (c) sagittal view.
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of mutual information (MI) is the calculation of entropy. For an im-

age A, the entropy is defined as

H

�
A

�
¼ �

Z
pAðaÞlog pAðaÞda;

where pA(a) (also called the marginal probability density function

[PDF]) is the probability distribution of grey values (image intensi-

ties), which is estimated by counting the number of times each grey

value occurs in the image and dividing those numbers by the total

number of occurrences. Given two images, A and B, their joint en-

tropy is

H

�
A;B

�
¼ �

ZZ
pABða; bÞlog pABða; bÞdadb;

where pAB(a,b) is the joint PDF defined by a ratio between the

number of grey values in the joint histogram (feature space) of

two images and the total entries (26). The mutual information is gen-

erally expressed as

MIðA;BÞ ¼ HðAÞ þ HðBÞ � HðA;BÞ:

Mutual information measures the level of information that a ran-

dom variable (e.g., Ia(x)) can predict about another random variable

(e.g., Ib(x)). Different from the conventional MI, whereby two sep-

arate intensity samples are drawn from the image, the Mattes imple-

mentation, MMI, uses only one set of intensity to evaluate both the

marginal and joint PDFs at discrete positions or bins that uniformly

spread within the dynamic range of the images. Entropy values were

computed by summing over all the bins. The number of bins used to

compute the entropy in MMI metric evaluation was chosen to be 30,

and the number of spatial samples used was 20,000. Details of MMI

implementation can be found in Mattes et al. (21).

The limited memory Broyden-Fletcher-Goldfarb-Shanno algo-

rithm (L-BFGS) (27–29) was used to optimize the MMI metric func-

tion with respect to the displacement parameters of the nodes, {xi},

to find the transformation matrix T(x) that relates the points on

image A and image B. Here we just briefly show the algorithm.

Starting from a positive definitive approximation of the inverse

Hessian H0 at x0, L-BFGS derives the optimization variables by

iteratively searching through the solution space. At an iteration k,

the calculation proceeds as follows: [1] determine the descent

direction pk ¼ �HkVf ðxkÞ; [2] line search with a step size

ak ¼ arg min f
aR0 ðxk þ apkÞ, where a is the step size defined in the L-

BFGS software package; [3] update xk+1 = xk + ak pk ; and [4] com-

pute Hk+1 with the updated Hk .

At each iteration a backtracking line search is used in L-BFGS to

determine the step size of movement to reach the minimum of f
along the ray xk + apk. For convergence a has to be chosen such

that a sufficient decrease criterion is satisfied, which depends on

the local gradient and function value and is specified in L-BFGS

by the Wolfe conditions (27). During the course of optimization,

the above iterative calculation based on L-BFGS algorithm con-

tinues until the following stopping criterion is fulfilled:

kVf ðxkÞk2

maxð1; kxkk2Þ
\3

or a pre-set maximum number of iterations is reached. In this study

we set 3 = 106 and the iteration number to 200, but no more than 100

iterations were exceeded in all our calculations for the algorithm to

converge.
Evaluation of algorithm performance
Evaluation of a contour mapping algorithm is a difficult task be-

cause of the lack of the ground truth for comparison. A straightfor-

ward means of evaluation is the visual inspection of the mapped

contours. In addition to this, evaluation based on synthetic images

(digital phantoms) is also commonly used. The images and existing

contours are distorted with preset deformation fields. Because the

gold standard is known, a direct comparison with the mapped con-

tour is made so as to assess the propagation algorithm quantitatively.

Beside these two methods, we further performed a bidirectional

mapping to evaluate the proposed algorithm. In this test, the reverse

of the original contour mapping was performed: the mapped con-

tours on the target phase were treated as the template contours and

mapped back to the original template phase. The contours so ob-

tained were then compared with the original manual contours, and

the difference between the two sets of contours was quantified.

The difference between the resultant and template contours was

measured in terms of the displacements of the vertex points on the

two contours. The last yet pragmatic evaluation of the algorithm per-

formance on patient’s study was based on the physician’s manual

contours.

Case study
Four thoracic cancer patients, named as patient 1, 2, 3, and 4, were

first used to test the proposed algorithm. These patients underwent

4D-CT scans. The 4D-CT images were acquired with a GE Discov-

ery-ST CT scanner (GE Medical System, Milwaukee, WI). The col-

lected data were sorted into 10 phase bins. The ROIs on the template

phase were manually segmented by a physician. Specifically, for pa-

tients 1 and 2, the inhale phase was chosen for manual segmentation,

and for patients 3 and 4, the exhale phase. Different ROIs were used

to better evaluate the algorithm. Lungs were selected from patients

1, 2, and 3 and gross tumor volume (GTV) from patient 4. Figure 3

illustrates the manual contour and narrow band representation for

the lung from patient 1. Contour is shown in the green curve together

with the regional narrow bands (light green area) on the transverse,

coronal, and sagittal views (Figs. 3a, 3b, and 3c, respectively).

To further assess the robustness of the proposed algorithm, we

also carried out the contour propagation calculation from planning

CT to Cone-beam CT (CBCT) for a head-and-neck case. The

CBCT images were acquired using the Varian Trilogy system (Var-

ian Medical Systems, Palo Alto, CA).

RESULTS

Convergence analysis
To better illustrate the iterative process of the contour

propagation, in Fig. 4 the MMI metric as a function of itera-

tion step is plotted for the narrow band mapping from the first

phase (inhale phase) to the other nine phases for the first tho-

racic patient. In all nine calculations it is seen that the metric

value decreases monotonically as the iteration proceeds.

However, the number of iterations needed for the algorithm

to find the optimal solution varies. It is interesting to observe

that, for an ‘‘easier’’ mapping whereby the deformation be-

tween the two phases is small, the number of iterations

required is less, whereas for ‘‘tougher’’ ones with larger dif-

ferences in ROI shapes, the required number of iterations in-

creases drastically. Indeed, from Fig. 4 it is seen that the

minimum number of iterations required for the metric to sat-

urate occurs when mapping the phase 1 to the adjacent
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phases, 2 and 10. For other mapping, the required iteration in-

creases and reaches its largest value for the ‘‘toughest’’ map-

ping between inhale and exhale (phase 5) phases.

In the above analysis, the bandwidth was set to be 15 mm.

The performance of the proposed algorithm was also evalu-

ated by varying the width in the range of 4 mm and 30

mm. Specifically, we tried the widths of 4 mm, 8 mm, 10

mm, 15 mm, 20 mm, and 30 mm. Our results revealed that,

when the band was too narrow (e.g., 4 mm), the mapping

may fail locally at a place not containing sufficient neighbor-

hood image features. The situation is improved dramatically

as the bandwidth increases. For all the clinical cases studied

here, no single failure was observed for a width of 15 mm.

When the width is too large, the whole ROI will be included

in the band. In this situation, the mapping becomes equiva-

lent to registering the whole image and the advantage of

the narrow band will be overshadowed by the dramatically

increased memory and computing costs. Our experience indi-

cates that a width of 10–15 mm provides a fine balance

between the computational accuracy and the associated cost.

We found that the overall computing time was increased

by roughly an order of magnitude when going from the nar-

row band approach to the conventional deformable model–

based contour mapping, say, approximately 3 min for narrow

band–based mapping vs. approximately 25 min for whole

image–based mapping. The dramatically increased computer

memory requirement in the latter case also posts a serious

problem when developing a clinically practical contour prop-

agation method for 4D radiotherapy.

Algorithm performance evaluation
In addition to visual inspect, the proposed algorithm was

assessed by a series of synthetic images or digital phantoms.

Typically, a thoracic CT image together with the contour was

distorted with the intentionally introduced deformation, and

then the contour was propagated onto the distorted image.

Fig. 4. Narrow-band metric values as a function of iteration step
when mapping the narrow band from phase 1 to the other nine
phases of the four-dimensional computed tomography.
A quantitative comparison was carried out. The mean and

maximum separation between the gold standard and the map-

ped contours were found to be 1.0 mm and 1.5 mm, respec-

tively. Figure 5 shows one example of digital phantom

experiments.

The performance of the proposed algorithm was further

evaluated by the bidirectional mapping calculation outlined

in Methods and Materials. A template contour at phase 1

was first mapped to phases 3 and 6. The mapped contours

were then treated as the ‘‘starting contours’’ and mapped

back to phase 1. The two back-mapped contours were com-

pared with the original template contour. The displacement

of each back-mapped vertex point relative to its original loca-

tions was computed, and a mean value of 0.8 mm was found

for the bidirectional mapping between phases 1 and 3 and 1.8

mm between phases 1 and 6. The larger displacement in the

latter situation was due to the fact that, computationally, it is

more difficult to map between two opposite phases, such as

inhale and exhale phases, owing to larger organ deforma-

tions. Overall, the observed displacement is comparable to

the pixel size, indicating that the mapping is accurate and

robust.

Thoracic patient study results
Figure 6 shows the contour mapping results for the first

clinical case. The results are presented in axial, coronal,

and sagittal planes for phases 2 (Fig. 6a–c), 6 (Fig. 6d–f), 8

(Fig. 6g–i), and 10 (Fig. 6j–l). For phases 2 and 10, which

are immediately adjacent to the inhale phase, the deformation

is relatively small and the mapped contours conform to the

ROI boundary very well. This represents the ‘‘easy’’ map-

ping situation and is consistent with the analysis presented

above. The average error was less than 1.5 mm. For a ‘‘re-

mote’’ phase, such as phase 6 shown in Fig. 6d–f, more

Fig. 5. Synthetic image and overlaid contours. The original contour
is depicted in green, gold standard contour in blue, and the mapped
contour in red.
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Fig. 6. Computed tomographic images and mapped contours for thoracic patient 1. Displayed are selected phases. From
the top row to bottom, phases 2, 6, 8, and 10 are presented, respectively. For each phase, transverse, coronal, and sagittal
views are shown from left to right.
iterations were entailed to find the optimal solution, and the

resultant contours tend to be worse as compared with those

phases adjacent to phase 1. According to the bidirectional

mapping, the average mapping error for phase 6 was esti-

mated to be less than 3 mm. The mapped GTV contours (in

red) together with manual contours (in blue) by a physician
for phases 1, 4, 8, and 10 in the study of patient 4 are shown

in Fig. 7 (parts a, b, d, and e, respectively). The template

phase (phase 6) with the template manual contour

(in green) is shown in Fig. 7c. In addition, the template man-

ual contour from this phase was overlaid on all the displayed

phases. For phases 4 and 8 the deformation was relatively
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Fig. 7. Axial view of computed tomographic images with gross tumor volume contours for the fourth thoracic patient. (a),
(b), (c), (d), and (e) correspond to phases 1, 4, 6 (template phase), 8, and 10, respectively. The green curves are the manually
outlined template contour from phase 6, and the red curves represent the contours after warping. The manual contours (in
blue) by a physician on individual phases were also displayed.
small (the manual contour was delineated on phase 6), and

fewer iterations were needed to find the optimal bands on

the target images. For phases 1 and 10, whereby deformation

was significant in the ROIs although more computing load

was necessary, a good result was still achieved with our nar-

row-band technique. Comparisons between the mapped con-

tours and the manually segmented contours by physicians for

these patients were also performed, and results revealed

a similar level of accuracy (maximum and mean values of

the discrepancy between the two sets of contours are 2.8

mm and –0.9 mm, respectively).

As a useful application of the proposed technique, in Fig. 8

we present the mean and maximum lung displacements of

contour vortices for each breathing phase relative to their lo-

cations on the template phase. As seen in Fig. 8, the overall

behavior of the mean and maximum displacements is consis-

tent with our intuitive expectation. For cases 1 and 2, the in-

hale phase (phase 1) was manually segmented, thus the

displacement for that phase is zero. For other phases, both

mean and maximum displacement values vary with the

breathing phase and reach their maxima at the opposite

phase. For case 3 the exhale phase was manually segmented,

and the behavior was thus opposite to cases 1 and 2. In gen-

eral, an average displacement of approximately 3 mm was

found for inhale and exhale phases. A slight digression is no-

ticed in phase 7 of patient 1, which may be caused by 4D-CT

binning artifacts. This type of data is particularly useful in

determining the patient-specific tumor margin to account

for breathing motion of the tumor target.
Contour propagation in a head-and-neck case
The results of contour mapping for the head-and-neck case

are summarized in Fig. 9. Figure 9a shows the planning CT

along with manually delineated contours, and Fig. 9b dis-

plays the mapped contours of the body, mandible, and

GTV on CBCT. For body and mandible a simple rigid map-

ping is enough to achieve high accuracy. For the GTV, how-

ever, the proposed deformable registration model was

necessary to adequately propagate the contour. A visual

inspection of the propagated contours suggests that the map-

ping is clinically acceptable.

DISCUSSION

Four-dimensional CT image segmentation represents

a necessary step in constructing a 4D patient model and com-

puting the accumulated dose in 4D radiotherapy. A natural

way to tackle the problem is to auto-map the manually delin-

eated contours on one of the phases to the remaining phases.

In this work, a regional computing algorithm was introduced

to deal with the issue. The approach relies on the assumption

that a narrow band surrounding the manually segmented con-

tour can capture sufficient information to drive the finding of

its counterparts in other phases of the 4D-CT. Obviously, this

assumption is valid when the band is sufficiently wide so that

a large number of voxels are involved in the registration cal-

culation. As demonstrated by the presented data, the registra-

tion and the mapping are reliable when the bandwidth is

larger than 4 mm. Computationally, the proposed approach
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Fig. 8. Displacement of region of interest boundary points as a function of respiration phase for three thoracic patients. (a)
Mean displacement vs. phase. (b) Maximum displacement vs. phase. 4D CT = four-dimensional computed tomography.
resides between a deformable model–based mapping and

a surface model–based ROI contour mapping.

The success of the image content–based approaches, such

as the proposed narrow-band approach or conventional de-

formable image registration, arises from the fact that they

fully utilize the inherent image features of the two input im-

ages. The narrow band–based technique is particularly attrac-

tive because it takes advantages of the useful features of both

image content–based technique and the regional surface–

based model. In a sense, it is a hybrid approach of the two dis-

tinct types of algorithms. The narrow-band approach utilizes

the imaging features surrounding the ROI to guide the search

of the optimal mapped contours while considering the shape

integrity of the ROI surface. It eliminates the need for a global
registration of the input images and thus greatly increases the

computational efficiency.

Application of the proposed contour mapping technique to

five clinical cases indicates that the technique is accurate and

computationally efficient. A common problem in image

segmentation and contour mapping studies is the lack of

quantitative validation. In the studies of Lu et al. (13) and

Schriebmann et al. (14), for example, the accuracy of

a deformable model–based contour mapping technique was

evaluated purely on the basis of visual inspection. Although

it is a convenient way for rapid assessment of a segmentation

calculation, especially in a case in which the ‘‘ground truth’’

contours do not exist, the method falls short in quantization.

The same approach was used in many other previous
Fig. 9. Contour propagation in a head-and-neck case. (a) Planning computed tomography with manually outlined template
contours (in blue) for body, mandible, and gross tumor volume. (b) Cone-beam computed tomography along with contours
after warping (in red) for the corresponding structures.
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investigations (1, 5, 14, 30). In this study, a bidirectional con-

tour mapping was proposed to examine the reliability and ro-

bustness of a contour mapping technique. This method

provides a useful test in assessing the success of a contour

propagation algorithm. We would like to point out that the bi-

directional mapping technique introduced in this work is

a necessary (but not sufficient) test. In a rare but possible sit-

uation, the bidirectional mapping may not be able to find that

an error occurred in the narrow-band mapping process. A vi-

sual inspection of the mapped result may help in this situa-

tion. On the basis of the bidirectional mapping experiments

and visual inspection for the patient studies, we conclude

that the proposed approach can perform very well even in

the presence of significant deformations.

In our calculation, we observed that the regular grid of

BSpline control points could be mapped to a region outside

the narrow band. Although it seems that this does not directly

affect the accuracy of the method, it may prolong the calcu-

lation by computing the displacements in regions where met-

ric information is irrelevant. Setups have been proposed to

adapt the splines control mesh to regions where deformation

is found to be significant (31), and the extension of the

method would allow us to use the BSpline control points de-

fined only in the regions within the narrow band. Implemen-

tation of this type of technique should further reduce the

computation time required to find the optimal solution.

Although there are numerous deformable algorithms, in-

cluding, for example, the elastic model (32–34), viscous fluid

model (35), optical flow model (5,30,36), finite element

model (33, 37), and radial basis function models such as

the basis spline model (28, 38, 39) and thin plate spline model

(40–43), a truly robust tool suitable for routine clinical appli-
cations is yet to be developed. Each of these approaches has

its pros and cons. The deformable calculation can be greatly

facilitated if some a priori system information can be incor-

porated. Along this line, the homologous correspondence of

the bony structure in two input images has been incorporated

in thin plate spline method, and remarkable improvement has

resulted (44). The narrow band–generated ROI contour cor-

respondence could also be used as prior knowledge to

improve a deformable registration. This work is still in prog-

ress and will be reported in the future.

CONCLUSIONS

In this work we have developed a regional deformable

registration–based method to auto-propagate contours for

4D radiotherapy. The central idea is that a narrow band

encompassing an ROI surface carries the neighborhood in-

formation of the ROI surface and can be used to establish

a reliable association between the ROIs in two phase-specific

image sets. Different from other type of regional algorithms,

such as surface mapping, the method uses the image features

captured in a band to guide the search for the optimal contour

mapping. Compared with conventional deformable image

registration–based approaches, a great reduction in computa-

tional burden and a large capture radius in optimization space

result. Our study demonstrated that the information contained

in the boundary region can be used to guide the contour map-

ping in all the testing cases presented in this article. The pro-

posed regional model decreases the workload involved in

4D-CT ROI segmentation and provides a valuable tool for

the efficient use of available spatial–temporal information

for 4D simulation and treatment planning.
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ABSTRACT 

 

Purpose: The purpose of this work is to develop a novel registration strategy to 

automatically map the rectal contours from planning CT (pCT) to cone beam CT (CBCT) 

for adaptive radiotherapy. 

Methods and Materials: The rectal contours were manually delineated in the pCT.  A 

narrow band with the delineated contours as its interior surface was then constructed.  

The correspondence contours in the CBCT was found by using a feature-based 

registration algorithm, which consists of two steps: (1) automatically searching for 

control points in the pCT and CBCT based on the feature of the surrounding tissue and 

matching the homologous control points using the Scale Invariance Feature 

Transformation (SIFT); (2) using the control points for a Thin Plate Spline (TPS) 

transformation to warp the narrow band and finding the corresponding contours from 

pCT to CBCT.  

Results: A robust rectal contour propagation method has been developed.  It was able to 

correctly identify sufficient number of homologous control points in the two input images 

and enabled accurate warping of the narrow band.  Digital phantom study indicated that 

an average accuracy of 1.2 mm is readily achievable.  For clinical cases, the method also 

yielded satisfactory results even when there were significant rectal content changes 

between the pCT and CBCT scans.    

Conclusion:  Exclusion of the volume inside the rectum and efficient detection of image 

features are two key factors for successful rectal contour mapping. The proposed 
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technique provides a powerful tool for adaptive radiotherapy of prostate, rectal and 

gynecological cancers in the future.  

 

Key words: Image-guided radiotherapy (IGRT), Adaptive radiotherapy, Deformable 

registration, Contour mapping, Scale Invariance Feature Transformation (SIFT). 
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INTRODUCTION 

Patients treated with radiotherapy for cancers such as prostate, rectal, and 

gynecological cancers experience significant day-to-day changes in their rectal volumes 

due to motion, distention, and filling.  Due to variations in the image content, an exact 

correspondence between two image sets acquired at different time points may not exist. 

Thus any deformable model relying on the use of information contained in the entire 

image may not be adequate in dealing with these patients.  The artifacts-induced disjoint 

between the images also makes the auto-propagation of contours outlined in one set of 

images to another highly difficult with conventional strategies. With continued 

enthusiasm for adaptive radiotherapy, the ability to reliably and efficiently map the 

rectum outlined in the pCT to the on-treatment CBCT images now becomes a bottleneck 

and needs to be resolved in order for many patients with cancer within the pelvis to 

benefit from the novel adaptive re-planning strategy (1, 2).  

The issue of rectal motion and deformation in conformal radiation therapy is 

described in various publications.  Lee et al (3) evaluated the CBCT as a tool to quantify 

the accuracy and precision of a simulated IMRT treatment delivery model for rectal 

cancer when rectal motion due to filling and deformation was taken into account.  The 

mean deformation variation of 0.71 and 0.94 cm in the LAT and AP directions was 

reported.  Foskey et al (4) shrank  the rectal gas region to a virtual point in order to make 

the correspondence of the rectal volumes in two sets of images.  Similar to that reported 

by Schreibmann et al (5), Gao et al (6) used an automatic image intensity modification 

procedure to create artificial gas pockets in the pCT images.  The major drawbacks of 

these types of approaches are the artificial introduction of image features within the rectal 
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volume and the potentially inaccurate association of the artificial image features.  As a 

consequence, the concordance between the rectal volumes after deformable registration 

and the manually segmented rectum was found to be less than 80%.   

In this work, we propose to use the image information in the neighborhood 

outside the rectal wall as the driving force to guide the rectal contour propagation from 

the pCT to CBCT.  Because the content in the region outside the rectal wall should be 

conserved, regardless of any changes in the rectal filling and distension, this strategy 

seems to be physically sensible.  Coupled with a powerful feature-based deformable 

registration model, which identifies homologous tissue features shared by the pCT and 

CBCT images, the novel approach captures the key issues of the system and provides a 

natural solution to the above stated problem.  Application of the proposed algorithm to a 

number of digital phantoms and clinical cases demonstrates that the technique is accurate 

and robust and may be useful for future adaptive therapy planning.   

 

MATERIALS AND METHOD 

Software platform 

The proposed contour mapping algorithm was implemented using the Insight 

Toolkit (7, 8) and the Visualization Toolkit (VTK) (9), which are open source cross-

platform C++ software toolkits sponsored by the National Library of Medicine (NLM).  

They are freely available for research purposes (http://www.itk.org for ITK and 

http://public.kitware.com/VTK/ for VTK).  ITK provides various basic algorithms to 

perform registration and segmentation for medical images.  The programs contained in 

ITK are highly extendable, making it an ideal platform for development of image 

http://www.itk.org/
http://public.kitware.com/VTK/
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registration and processing techniques.  VTK is primarily used for image visualization 

(including contours). 

 

Narrow band representation of the rectal wall 

Inconsistency in rectal contents between two input image sets could severely 

reduce the performance of a deformable registration algorithm.  Co-registering an empty 

rectum without bowel gas to a rectum filled with bowel gas using any deformable model 

could be problematic, for example.  A natural strategy is to exclude the volume inside the 

rectal wall.  In practice, the template rectal contour in the pCT image has been manually 

contoured as a part of the routine treatment planning process, thus making it a 

straightforward matter to exclude the volume inside the rectal wall.  Figure 1 shows the 

proposed contour mapping process.  After manual segmentation in the pCT, a narrow 

band as sketched in Fig. 2 is constructed with the manually segmented rectum 

representing the inner surface of the band.  On an axial slice, the contour has a polygon 

shape and the vertices of the polygon form the basis for constructing the narrow band. 

The distance between the neighboring vertices on the contour is typically 2-10 mm 

depending on the shape of the contour.  In generating the narrow band, we first create 

cubes with side length of d for each vertex, as depicted by points A and B in figure 2b.  In 

order to obtain a smooth band, between A and B three more cubes, cornered at points C, 

D, and E, are inserted.  Point C is chosen to be the middle point between A and B.  Point 

D is the point between A and C, and point E is the point between B and C.  More 

interpolated vertex points can be similarly introduced when needed.  The blue area in Fig. 

2a stands for the narrow band.  
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The narrow band in our approach is used as a compact representation of the rectal 

surface.  As will be detailed in the next subsection, a feature-based deformable 

registration algorithm is employed to find the correspondence of the band in the CBCT 

images.  Upon successful registration, the deformation field is utilized to propagate the 

pCT contour to the CBCT.  Because only the image features outside the rectum is used, a 

narrow band shown in Fig. 2 permits us to take advantage of the regional calculation 

algorithm yet avoiding the nuisance of rectum/bladder filling.  

 

Feature-based warping of the narrow band 

As illustrated in figure 1, the process of contour mapping is to warp the narrow 

band constructed above in such a way that its best match in the CBCT images is found.  

Mathematically, this constitutes an optimization problem, in which a group of 

transformation parameters that transform the points within the band in pCT to their 

corresponding points in CBCT.  The input to the contour mapping software includes the 

narrow band and the CBCT images, which are described by the image intensity 

distributions Ia(x) and Ib(x), respectively.  

To find the transformation matrix, T(x), that maps an arbitrary point in the band to 

the corresponding point in the CBCT images (or vice versa), a Thin Plate Spline (TPS) 

deformable model is employed.  But other models should also be applicable to model the 

deformation of the band.  Currently, the TPS method still needs manual placement of 

control points and this work automates the control point selection by using the SIFT 

tissue feature searching (see next subsection for details).  Roughly, 300 control points are 

selected based on the prominent tissue features.   
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The detailed description of the TPS transformation can be found in Ref. (10-13).  

Briefly, a weighting vector W=(w1, w2… wn) and the coefficients a1, au, av are computed 

from a series of matrices which are constructed using n pairs of SIFT-selected control 

points in the pCT image (xi, yi) and in the CBCT image (ui, vi), respectively.  The 

function transforming a voxel in the pCT to a new coordinate in the CBCT is obtained 

from 

( ) ( )( )∑
=

−+++=
n
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1 ,',' ,       (1) 
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(2) Letting , 1 1 ( , )Q u v= 1 22 2( , )Q u v= , …,  ( , )n nQ u vn=  be n corresponding 

control points in the CBCT image.  We construct matrices 

 1 2
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n

u u u
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v v v
⎡ ⎤

= ⎢ ⎥
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, (5) 
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The weighting vector  and the coefficients a, ,1 2( , )nW w w w= L 1, au, and av can be 

computed by the equation  

  (7) (1
1| T

u vL Y W a a a− =

(3) Using the elements of L-1Y to define a function ( ', ')f u v  everywhere as given in 

Eq. (1).  This function transforms a voxel in the pCT volume to a new coordinate in the 

CBCT image.  Upon successful registration, the deformation field is extracted and 

utilized to transform the manual rectal contours to CBCT. 

 

Scale-Invariant Features Transformation (SIFT) 

The feature-based deformable registration is an essential part of the proposed 

contour mapping process.  While the TPS deformable registration is relative simple and 

doesn’t require iterations and intensive calculation for each individual voxel, it relies on 

the use of homologous control points in the two input image sets to be co-registered.  In 

reality, the interactive identification of the control points in both images is tedious, 

difficult, and often a source of error.  Here we automate the control point selection by 

using the SIFT-based tissue feature searching.  Because of the efficient use of a priori 

system knowledge, the approach greatly enhances the robustness of the narrow band 

warping algorithm.  
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The SIFT method was introduced by Lowe (14) to characterize the local tissue 

features.  The method utilizes both image intensity and local gradient information to 

characterize the neighborhood property of a point.  The algorithm includes scale-space 

extrema detection, control point localization, orientation assignment and control point 

descriptor.  In 2D case, for example, the method uses the orientation histograms of the 

four quadrants surrounding a point (containing 64 pixels) to characterize the inherent 

tissue feature of the point (see Fig. 3).  To obtain the histogram for a quadrant, as 

illustrated in Fig. 3, the gradient of each of the 16 pixels in a quadrant is computed.  An 

eight-bin histogram, with first bin representing the number of pixels whose gradients fall 

between 0o and 45 o, and so forth, is then constructed.   For illustration, the histogram of 

each of the four quadrants is displayed schematically in the right panel of Fig. 3 as an 

eight-vector plot.  In total, 32 vectors are calculated in 2D case.  In extending the SIFT 

method from 2D to 3D, total of 192 vectors are needed.  These vectors represent the local 

feature and serve as a signature of the point.  The SIFT descriptor is considered as one of 

the most effective descriptors currently available(15, 16).   

Theoretically, the SIFT descriptor can be computed for each voxel in an image. 

However, this is computationally expensive.  The commonly used sampling strategy is 

to compute the descriptor every 2 to 3 voxels in x, y and z directions.  After the SIFT 

descriptors are computed in both input images, the points having the most similar SIFT 

descriptors in the two images are then identified.  For a given point, indexed by n, in the 

pCT image, the least-squares difference of the SIFT descriptor of the point and that of a 

potential association point n´ in the CBCT, Sn,n’,  is first computed according to 

( ) ( )
2

, ' '
1

k

n n n nS I I
α

α=

= ∇ − ∇∑ α
,    (8) 
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where I represents the pixel intensity.  α index the bins of the SIFT histogram of a point 

and the summation over α runs from 1 to 32 for 2D case, and 192 for 3D case.  After Sn,n’ 

is computed for all n´ in the CBCT, two points 1n′  and 2n′  that have the least histogram 

difference with point n are identified.  If the ratio of these two values is less than 80%, 

the point that has the lowest S value is chosen tentatively as the correspondence of the 

point n, otherwise, no association is made for the point.  Note that the criterion of 80% 

here is an empirical value.  If the value is too large, the number of false association 

increases.  Conversely, many true associations may be missed.  In general, this criterion 

should be determined on an organ specific basis.  For lung, for example, it was found that 

a criterion of 50% is adequate to find sufficient number of associations.  

To further increase the accuracy of control point association, a bi-directional 

mapping strategy is developed based on the fact that if a point in the pCT is mapped 

correctly to the CBCT, it will be default to be mapped back to the original control point 

in the pCT when an inverse map is applied to the corresponding control point in the 

CBCT.  Therefore, after the original association of control points as described above, the 

mapped points in CBCT is inversely co-registered to the pCT.  If the correspondence still 

exists, the control point pair is labeled a match.  Otherwise, they are considered as a 

mismatch and deleted from the list of correspondence points.  Upon the association of the 

points, the associated points are employed as control points for TPS as described above.   

 

Evaluation of the models using digital phantom and existing patient data 

The performance of the above model is evaluated by a number of 2D digital 

phantoms and archived clinical cases.  In the digital phantom experiments, two 
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deformations are introduced.  A virtue of this approach is that the “ground truth” 

solutions exist and the transformation matrices are known, thus making the evaluation 

straightforward.  The mathematical transformations used to deform the phantom is 

generated using a formula (17):  

( ) ( )' , 1 cosx x y b m xq= +                (9) 

( ) ( )' , 1 cosy x y b m yq= +                (10) 

Here 1tan y
x

q -= .  Two parameters, m and b, are used to characterize a deformation. 

Generally, they describe the complexity and magnitude of a deformation, respectively.  

The contour outlined in the original image is then mapped to the deformed image.  The 

accuracy of the contour mapping calculation is assessed by comparing directly with the 

contour from the known transformation matrix. 

Contour propagation from pCT to CBCT is studied by using a prostate cancer and 

a rectal cancer case.  The pCT is acquired with a GE Discovery-ST CT scanner (GE 

Medical System, Milwaukee, WI) approximately two weeks prior to the initiation of the 

radiotherapy.  The on-treatment CBCT images are acquired using the Varian TrilogyTM 

(Varian Medical Systems, Palo Alto, CA).  Each slice of pCT or CBCT is discretized into 

512 × 512 pixels.  The images are transferred through DICOM to a high-performance 

personal computer (PC) with a Xeon (3.6 GHz) processor for image processing.  The 

manually outlined contours in the pCT images are mapped to CBCT images using the 

proposed technique.  In general, quantitative validation of a deformable registration 

algorithm for a clinical case is difficult due to the lack of the ground truth for clinical 

testing cases.  For the cases studied here, visual inspection method is employed to assess 

the success of the proposed algorithm.   
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RESULTS 

 

2D digital phantom experiment 

The proposed algorithm is first tested using a 2D digital phantom (Fig. 4a) with 

two intentionally introduced deformations of the image shown in Figs. 4b and 4c, 

respectively.  The rectal contour in pCT is manually delineated and shown in Fig. 4a in 

red.  The deformation shown in Figs. 4b and 4c are obtained by setting the parameters b 

and c in Eqs. (9) and (10) to (b = 2, m = 2) and (b = 2, m = 3), respectively.  The green 

contours in Figs. 4b and 4c represent the auto-mapped contour.  Overall, the mapped 

contours can capture the main features of the two dramatic deformations, and conform 

snugly to the boundary of the rectum in both cases. 

In obtaining the result shown in Fig. 4b, a total of 200 control points were 

identified by the bi-directional SIFT calculation as described in method.  For clarity, a 

selection of the SIFT-identified control point associations are displayed in Fig. 5.  The 

total number of control points identified here are far more than that commonly used in 

TPS calculation (11), allowing an improved deformable warping of the narrow band.  

The displacement field derived by using the TPS method is shown in Fig. 6a.  For 

comparison, the known displacement field from Eqs. (9) and (10) is plotted in Fig. 6b. 

The subtraction between the TPS-derived displacement field and the known field is 

shown in Fig. 6c.  It is found that the average deviation of the SIFT-TPS displacement 

from the known solution is less than 1.2mm.   
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Clinical case study 

The contour propagation study from pCT to CBCT for the prostate case is 

presented in Fig. 7.  The top row shows the pCT image with manually delineated 

contours (green curves).  The auto-mapped contours overlaid in the CBCT are displayed 

in the bottom row (red curves).  As mentioned in the introduction, the propagation of 

rectum wall is often complicated by the fact that the physical one-to-one correspondence 

may not exist due to the addition or subtraction of some contents within the rectum.  

Figure 8 exemplifies this and shows that the rectal filling at the time of CBCT acquisition 

is quite different from that of pCT.  As can be intuitively conceived, this image content 

change could severely reduce the performance of a conventional deformable 

registration(18-20).  The narrow band approach described in this work circumvents the 

problem by excluding the rectal volume affected by the rectum/bladder filling.  As a 

result in Fig. 7, the mapped contours closely conform to the rectal wall change and the 

final contours are clearly clinically sensible. 

In practice, rectal volume motion and deformation can cause significant 

uncertainties pertaining to the adequacy of actual dose delivered to the gross tumor 

volume (GTV) as well as to the surrounding normal structures.  This issue has been a 

major obstacle in the implementation of IMRT in rectal cancer.  In Fig. 8 the three axial 

pCT and CBCT images of a rectal cancer patient acquired in an interval of two weeks are 

shown.  Significant target volume motion and deformation are observed from Fig. 8.  The 

rectal volume in the pCT is found to be more than 3 times that of the rectal volume in the 

CBCT and thus represents a challenging situation for any deformable model.  The rectal 

contours are manually drawn in the pCT and mapped to the subsequent CBCT using the 
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proposed method.  The upper row of Fig. 8 shows three axial slices of the pCT with 

manually delineated contours (green curves).  The results of contour propagation from 

the pCT to the CBCT are shown in the lower row of Fig. 8 (red curves).   

 

DISCUSSION 

In this work, an effective feature-based rectal contour mapping algorithm has been 

described.  An indispensable step toward online or offline adaptive re-planning with 

consideration of the patient’s dose delivery history and on-treatment anatomy is the 

expedite organ segmentation of CBCT images (7, 21-25).  While this task is, in principle, 

achievable using deformable registration of the pCT and CBCT images, the accuracy of 

the registration and therefore the contour mapping, is often adversely affected by the 

presence of image contents in one image that do not have correspondence in the other 

image.  The propagation of rectum wall is an example of this.  For prostate, rectal, or 

gynecological cancer patients for example, the presence and absence of bowel gas can 

vary daily.  Co-registering an empty rectum without bowel gas to a rectum filled with 

bowel gas (or vice versa) using any deformable model could be problematic and large 

errors could occur.   

We describe a regional contour propagation algorithm taking into account 

possible organ deformation and anatomic changes.  Because the narrow band contains 

only the image features outside the rectum, this method is not affected by the rectum 

filling changes.  The proposed approach relies on the assumption that a narrow band 

surrounding the manually segmented rectal contour can capture sufficient information to 

drive the finding of its counterpart in the subsequent CBCT.  Obviously, this assumption 
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is valid when the band is sufficiently wide so that enough image features are involved in 

the warping calculation.   

The use of SIFT descriptor enhances our ability to find the correspondence of the 

narrow band because of the effective utilization of image intensity and gradient 

information.  In contrast to the conventional intensity-based image registration, which 

only uses intensity information of the voxels, the feature-based registration extracts 

information regarding image structure, including shape, texture, etc.  Therefore, the 

feature-based image registration is generally more effective in correctly identifying 

corresponding voxels compared to the intensity-based image registration.  

The proposed contour mapping technique is applied to digital phantoms and 

clinical cases and, in all cases, the contour mapping results are found to be clinically 

acceptable.  It is important to emphasize that in these test cases, the rectal deformations 

are quite significant and thus present challenges to any deformable model or contour 

mapping technique.  It is impressive that a simple approach with a narrow band and SIFT 

descriptor can capture the main feature of the rectal contour and help to find the 

correspondence contours in the CBCT images.   

In this study, a bi-directional SIFT descriptor are employed to examine the 

reliability and robustness of the calculations.  The bi-directional mapping further 

enhances the degree of success of a contour propagation algorithm.  It is useful to note 

that the bi-directional mapping is a necessary (but not sufficient) test.  In a rare but 

possible situation, the bi-directional mapping may not be able to find an error occurred in 

the contour mapping process.  A visual inspection of the mapped result is always helpful 

in practice.  
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CONCLUSION 

 

Significant inter-fractional patient setup uncertainty and anatomy changes have 

been reported in numerous studies, and are widely recognized as one of the major 

limiting factors for maximum exploitation of modern radiation therapy techniques such 

as IMRT and IGRT.  The advent of onboard volumetric imaging devices promises to 

improve the situation by providing valuable 3D (or even possibly 4D) geometric data of 

the patient in the treatment position and allows for the adaptive modification of treatment 

plan during a course of treatment.   

In this work, an effective feature-based rectal contour mapping algorithm has been 

described.  The method yielded satisfactory mapping for both digital phantom and clinical 

cases.  It is impressive that the algorithm is able to successfully map the contours from 

pCT to CBCT even for some very challenging cases in which the deformation and/or 

image content change are dramatic.  The two salient features of the described algorithm 

are: (1) the use of inherent tissue feature as a priori knowledge for deformable 

registration; and (2) limiting the ROI to exclude the volume inside the rectum and 

focusing on the adjacent neighborhood of the rectal contour.  The algorithm should be 

extendable for contour propagation of organs with similar features, such as the bladder 

and stomach. 
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FIGURE CAPTIONS 

 
Figure 1 Overall process of rectal contour propagation. 

 

Figure 2 A sketch of narrow band. (a) a narrow band image surrounding a manually 

segmented rectal contour; (b) a narrow band construction is illustrated for two vortex 

points A and B. 

 

Figure 3 A sketch of orientation histogram in SIFT method.  

SIFT—Scale Invariance Feature Transformation 

 

Figure 4 Rectal contour propagation from the pCT to two dramatically deformed images. 

(a) original contour, the red curve represents the manually delineated contour; (b) and (c) 

its optimal mapping in the two deformed images (green curves).  For comparison, the 

original contour from the pCT is also shown in the deformed images (red curves).   

PCT—planning CT 

 

Figure 5 Control points in the 2D contour mapping 

2D—two dimentional 

 

Figure 6 Displacement fields. (a) TPS-derived displacement field for the 2D digital 

phantom study; (b) intentionally introduced displacement field; and (c) subtraction of 

TPS derived and the known displacement fields.   
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TPS—Thin Plate Spline 

2D—two dimentional 

 

Figure 7 3D contour mapping for the rectum of a man with prostate cancer.  The top row 

is the three transactions in the planning CT image with manually delineated contours 

(green contours), the bottom row is corresponding transactions in the CBCT image with 

auto-mapped contour (red contours).  The left column is the axial plane, the middle 

column is the coronal plane, and the right column is the sagittal plane.   

3D—three dimentional 

CT—computational tomography 

CBCT—cone beam computational tomography 

 

Figure 8 Rectal contour mapping for a rectal cancer case.  The top row shows several 

axial slices in the pCT image with manually delineated contours (green contours).  The 

bottom row is the corresponding slices in the CBCT image with auto-mapped contours 

(red contours). 

PCT—planning CT 

CBCT—cone beam computational tomography 
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ABSTRACT 

 
The purpose of this work is to develop an effective technique to automatically propagate 

contours from planning CT to cone beam CT (CBCT) to facilitate CBCT guided prostate 

adaptive radiation therapy. Different from other disease sites, such as the lungs, the 

contour mapping here is complicated by two factors: (i) the physical one-to-one 

correspondence may not exist due to the insertion or removal of some image contents 

within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT 

images due to increased scatter. To overcome the issues, we investigate a strategy of 

excluding the regions with variable contents by a careful design of a narrow shell 

signifying the contour of an ROI. For rectum, for example, a narrow shell with the 

delineated contours as its interior surface was constructed to avoid the adverse influence 

of the day-to-day content change inside the rectum on the contour mapping. The 

corresponding contours in the CBCT were found by warping the narrow shell though the 

use of BSpline deformable model. Both digital phantom experiments and clinical case 

testing were carried out to validate the proposed ROI mapping method. It was found that 

the approach was able to reliably warp the constructed narrow band with an accuracy 

better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded 

satisfactory results even when there were significant rectal content changes between the 

planning CT and CBCT scans.  The overlapped area of the auto-mapped contours over 

90% to the manually drawn contours is readily achievable. The proposed approach 

permits to take advantage of the regional calculation algorithm yet avoiding the nuisance 

of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in 

the future.  

 

 

 

 

 



 

1. Introduction 
There are increased interests in online/off-line adaptive replanning with consideration of 

updated patient anatomy information derived from cone beam CT (CBCT)(Yan et al. 

2000, Court et al. 2005, Ghilezan et al. 2005, Langen et al. 2005, Letourneau et al. 2005, 

Oldham et al. 2005, Xing et al. 2006, Yang et al. 2007). An indispensable step toward the 

realization of this type of adaptive replanning is the segmentation of CBCT images(Gao et al. 

2006, Smeenk et al. 2007). While this task is, in principle, achievable using deformable 

registration of the planning CT and CBCT images, the accuracy of the registration, and 

therefore contour mapping, is often adversely affected by the presence of image contents in 

one image that do not have correspondence in the other image, such as the presence/absence 

of bowel gas or bladder filling in the pelvic patients(Huang et al. 2002). A regional contour 

mapping algorithm is highly desirable for its high computational efficiency and 

accuracy(Schreibmann and Xing 2005, Chao et al. 2007, Chao et al. 2008). It also has the 

potential to improve the robustness of deformable registration because the mapped contours 

can be utilized as a priori system information to facilitate the registration of the two input 

images.  

 Large interfraction organ motion exists in radiation therapy of pelvic diseases, 

such as prostate and cervical cancers(Balter et al. 1995, Yan and Lockman 2001, 

Michalski 2003). Adaptive therapy provides a viable option to ensure an adequate dose 

coverage of the tumor target while sparing the sensitive structures(Yan et al. 1997, Court 

et al. 2005, Wu et al. 2008). Toward the general goal of clinical implementation of 

adaptive therapy of prostate cancer, in this work we develop an effective regional contour 

mapping technique to automatically propagate rectum and prostate contours from 

planning CT to CBCT. Different from other organs, such as the lungs and liver, the 

contour mapping here is complicated by two factors: (i) the physical one-to-one 

correspondence may not exist due to the insertion or removal of some image contents 

within the rectum(Gao et al. 2006); and (ii) reduced contrast to noise ratio (CNR) of the 

CBCT images due to increased scatter in CBCT scanning(Li et al. 2007). A solution 

customized to rectum mapping is proposed to overcome the above two limitations and 



allow us to take advantage of the regional calculation algorithm yet avoiding the nuisance 

of rectum/bladder filling.  

 

 

2. Methods and Materials 
 

Software platform 

The narrow band contour mapping algorithm was implemented using the NLM 

Insight Toolkit (ITK)(Ibanez et al. 2003) and the Visualization Toolkit (VTK)(Schroeder 

et al.), which are open source cross-platform C++ software toolkits. They are freely 

available for research purposes (http://www.itk.org for ITK and 

http://public.kitware.com/VTK/ for VTK). ITK provides various kinds of basic 

algorithms for performing registration and segmentation for medical images. The fact that 

programs contained in ITK are highly extendable makes it an ideal platform for the 

development of image registration methods. VTK is primarily used for image 

visualization. 

 

The contour propagation process 

The rectum contour propagation from planning CT to CBCT was carried out in 

the following sequences: (1) rigid alignment of the planning CT and CBCT images using 

a rigid registration; (2) construction of a narrow band extended to a region 1~2cm outside 

the manually delineated contours on planning CT; (3) warping of the shell from the 

planning CT to CBCT. Upon successful warping of the shell, the deformation field in 

step (3) was utilized to transform the manually segmented contours to the CBCT images. 

The central idea here is to exclude the volume inside the rectum because its content may 

change from day to day. Prostate contour can be mapped similarly, but the shell spans the 

regions both inside and outside the manually segmented prostate. Figure 1 depicts the 

flowchart of the overall contour mapping process using the narrow shell technique. 

The manually delineated ROI contours on planning CT are referred to as the 

template contours. Figure 2 illustrates the planning CT and the template contours for the 

ROIs such as prostate and rectum for the one of the patients studied in this work. A 

http://www.itk.org/
http://public.kitware.com/VTK/


narrow shell was constructed using the method described above for each structure. 

Typical shapes of the narrow shells for rectum are illustrated in Fig. 3. The shell width 

was chosen to be 10 mm in this study. 

Upon the construction of shell structure, the shell is warped onto CBCT images 

by using a BSpline model(Lee et al. 1996, Lee et al. 1997, Badea et al. 2008) with a 

normalized cross correlation metric function defined as 
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where  and are the intensities of the i-th voxels of images A and B, 

respectively; = Tx , where 

)(xI A
i )(xI B

i ′

x′ T is the transformation matrix. In the narrow shell warping 

calculation, the input images to the registration software are the narrow shell, , and 

the CBCT image, . The narrow shell acts as a shape representation model of an 

anatomic structure. The task here is to find the deformation, T(x), that maps an arbitrary 

point x on the fixed image to the corresponding point x

)(xI A

)'(I B x

’ on the moving image (or vice 

versa) so that the best possible match, as measured by the registration metric, is achieved. 

The calculation proceeds in an iterative fashion. The limited memory Broyden-Fletcher-

Goldfarb-Shannon algorithm (L-BFGS)(Liu and Nocedal 1989) was used for the iterative 

optimization. The L-BFGS optimizer is well known for its superior performance in 

dealing with high dimensional problems (Schreibmann and Xing 2005, Schreibmann et 

al. 2006). We briefly describe the optimization algorithm in the following.  

The BFGS method is derived from the Newton’s method in optimization which is a 

class of hill-climbing optimization techniques.  It tries to seek the stationary point of a 

function, where the gradient is 0. Starting from a positive definitive approximation of the 

inverse Hessian H0 at x0, L-BFGS derives the optimization variables by iteratively 

searching through the solution space. At an iteration k, the calculation proceeds as 

follows: 

 



1. Determine the descent direction )( kkk f xHp ∇−= ; 

2. Line search with a step size )(minarg
0

kkk f px αα
α

+=
≥

, where α is the step size 

defined in the L-BFGS software package; 

3. Update xk+1 = xk + αk pk ; 

4. Compute Hk+1 with the updated Hk . 
 
At each iteration a backtracking line search is used in L-BFGS to determine the step size 

of movement to reach the minimum of f along the ray xk + αpk. During optimization, the 

iterative calculation continues until the following stopping criterion is fulfilled: 
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or a pre-set maximum number of iterations is reached. In this study we set  and 

the iteration number to 200.  

610−=ε

 

Evaluation of algorithm performance 

Evaluation of a contour propagation algorithm is often a difficult task because of 

the lack of the ground truth for comparison. A commonly used approach is to visually 

inspect the mapped contours by a clinician. The use of synthetic images (digital phantoms) 

is also useful. In this test, the images and existing contours are distorted with known 

deformation fields, which serves as the ground truth for quantitative evaluation of the 

model based contour propagation.  In constructing the digital phantom, the deformation 

field used to deform a planning pelvic CT image was generated as follows. A B-Spline 

 grids were overlaid on the CT image. Three random generators following the 

Gaussian distribution were called for to provide the displacements for the components of 

x, y, and z at each grid point. The mean value 

888 ××

µ  of the Gaussian function were all 

chosen to be 0, but the variances of the three components were set to be 

 

0.522 == yx σσ  mm 

0.22 =zσ mm. 



 

Figure 4 (a) shows the deformation field overlaid on the original CT image. The manual 

contour on the original CT image was warped with the same deformation field. This 

contour served as the ground truth. A comparison of the mapped contour with the ground 

truth allowed us to quantitatively assess the accuracy of the proposed approach. 

 

Patient Study 

The image data sets for five prostate cancer patients were used to further evaluate 

the proposed technique. The CBCT images were acquired using a TrilogyTM system 

(Varian Medical Systems, Palo Alto, CA). All patient CBCT images were acquired with 

90 mA tube current and 120 kV voltage. Under this image acquisition protocol, the dose 

was around 4cGy for a kV CBCT scan (Wen et al. 2007). The CBCT image sets for all 

enrolled patients were reconstructed with a 2.5 mm slice thickness. The planning CT 

scans were acquired with a GE Discovery-ST CT scanner (GE Medical System, 

Milwaukee, WI). The size of a CT slice was 512 × 512. The planning CT images were 

reconstructed with a 1.25 mm slice thickness for all patients. All CT images were 

transferred through DICOM to a high-performance personal computer (PC) with Xeon 

(3.6 GHz) processor for image processing.  

 

 

3. Results and Discussions 
 

I. Digital phantom study 

 The narrow shell constructed based on the planning CT image and the template 

rectal contour (Fig. 4(a)) was warped to the digitally deformed images using the 

technique described above. For convenience, the deformation field used to deform the 

planning CT images is displayed in Fig. 4(a) as a vector map. The rectal contour was then 

extracted upon the successful warping of the shell. The resultant rectum contour is shown 

in Figure 4(b) together with the ground truth contour. The difference between the two 

sets of contours was found to be insignificant by visual inspection. A quantitative 



comparison indicated that the mean discrepancy between the two sets of contours was 

less than 1.3 mm.  

 

II. Clinical case study 

 The proposed approach was applied to five enrolled prostate cancer patients. 

Figure 5 shows the result of contour propagation for the first clinical case in axial, 

coronal, and sagittal views of CBCT image, respectively. For comparison purpose, the 

result obtained by registering the whole images using conventional BSpline method was 

also superimposed in Fig. 5 (indicated by the yellow curves). We also observed the 

convergence behaviors of the two approaches by examining the metric function as a 

function of the iteration step. Nearly 30 iterations were needed in the conventional 

registration, whereas only 12 iterations were necessary to obtained converged result in 

narrow shell based approach. In this particular case, both approaches yielded acceptable 

results because no substantial change in rectal filling in planning CT and CBCT. The 

difference between two sets of mapping is well within 2 mm. However, the narrow shell 

based calculation was found to be an order of magnitude more efficient as measured by 

the computational speed, in addition to the greatly reduced usage of computer memory. 

Results for the second patient are shown in Figure 6. For this patient, however, the rectal 

fillings in planning CT and CBCT were different and the conventional BSpline approach 

lead to a larger error (mean error ~ 8.0 mm) or failed to accurately map the rectum from 

planning CT to CBCT. The physician’s manual contour was also superimposed on the 

images for visual comparison purpose. 

 The mapped rectum and prostate contours for another case are displayed in Figure 

7. Overall, the algorithm performed well for both rectum and prostate. The mean error of 

the mapped contours was estimated to be around 2 mm for the rectum, and 2.5mm for the 

prostate. The slightly larger error in prostate contour mapping is attributed to that fact 

that the image contrast in the prostate boundary region was not high. In this case, a 

careful examination and even a manual modification of the mapped contour by a 

physician may be needed in clinical operation. 

Up to this point, little has been done to register images with the general problem 

of image content change as studied in this work. Gao et al and Fosekey et al (Foskey et 



al. 2005, Gao et al. 2006) studied the topics by using different models. The essence of 

their work was to introduce “artificial gas” to mimic the rectal image content or shrink 

the “gas” region by deflation. While the introduction of the artificial change could 

improve the registration accuracy in some special cases, the approaches may fail when 

the change in rectum content involves of solid substances, such as the bowel. A narrow 

shell model seems to be natural in addressing the issue of image content inconsistence. 

The technique is conceptually simple, easy to implement and valid for a wide variety of 

clinical situations.  

 One of the practical concerns is that the relatively low quality of CBCT images 

may influence the accuracy of image registration and thus the contour mapping. Paquin et 

al. (Paquin et al. 2008) quantitatively studied the influence of different types of noises on 

deformable registration and found that the accuracy of image registration does not depend 

on the global noise unless the noise reaches a certain threshold value. Murphy et al. 

(Murphy et al. 2008) also demonstrated that noise levels in cone-beam CTs that might 

reduce manual contouring accuracy do not reduce image registration and automatic 

contouring accuracy.  

In principal, the proposed method is also applicable to facilitate the contour 

warping from planning CT to MV CBCT or images acquired using the Tomotherapy 

devices. However, it is important to emphasize that a prerequisite of any deformable 

model based approach is that there are sufficient image features in the neighborhood of 

the contours to guide the warping of the images. Because of the inherent low contrast of 

the MV images, the deformable registration of CT and MV CBCT may be challenging. 

Lu et al. have reported successful deformable registration of CT and MV CT images (Lu 

et al., Phys. Med. Biol. 49(2004) 3067-3087). It will be an interesting subject of future 

research to examine whether a similar or better accuracy of registration can be achieved 

when a local deformable registration technique is used for the system. 

 

 

 

 

 



5. Summary 

 
An automatic contour mapping technique customized for adaptive radiation therapy of 

prostate cancer has been described. Deformable image registration has been extensively 

studied. The narrow shell constructed surrounding a ROI contour provides a compact 

representation of the ROI and greatly facilitates the contour mapping calculation. The 

chief advantage of the proposed technique is that it is much less prone to the variation in 

the image contents, which occurs frequently in the pelvic region due to involuntary 

physiological process. Additionally, the approach is computationally more efficient with 

lower computer memory consumption and fast computational speed. Both phantom and 

clinical case studies yielded satisfactory results and suggested that the method may prove 

to be useful for adaptive radiotherapy of prostate cancer in the future. 
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FIGURE CAPTIONS 
 

Figure 1.  Flowchart of the narrow shell contour mapping process. 

 

Figure 2.  Axial view (a), coronal view (b), sagittal view (c), and volumetric rendering (d) 

of planning CT of the first patient. Template contours of prostate (magenta) and rectum 

(green) were superimposed on CT images. 

 

Figure 3. Narrow shell representation of regions of interest (ROIs).  The curves represent 

contours and the shaded regions sketch the narrow shell construct. Illustrated are axial 

view (a), coronal view (b) and sagittal view (d) of the planning CT image with a single-

sided narrow shell surrounding the rectum template contour. 

 

Figure 4. Digital phantom experiment. (a) original CT image and manual contour; The 

vectors overlaid on the image are the displacement field introduced to deform the image. 

(b) digitally deformed CT image with ground truth contours and mapped contours. The 

template contour after rigid registration of the two images is also displayed. 

 

Figure 5. Rectal contours on axial, coronal, and sagittal planes obtained with the 

proposed narrow shell-based (in red) and conventional BSpline approach (in yellow) for 

the first clinical case. The contours after rigid alignment (in blue) were overlaid on the 

same CT images. 

 

Figure 6. Propagated rectal contour (in red) overlaid on CBCT images in the second 

patient case. The results based on conventional approach (in yellow) and physician’s 

manual contour were also superimposed on CBCT images.  

 

Figure 7. Contour propagation results for the fourth clinical case. (a), (b), and (c) show 

the rectum contours on axial, coronal and sagittal views of CBCT image; (d), (e), and (f) 

display the mapped prostate contours on CBCT images. The manual contours were also 

overlaid on CT images. The rectum contours are in green and prostate in magenta. 
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